Drilling leakage crack width prediction method based on neural network data mining

The embodiment of the invention provides a drilling leakage crack width prediction method based on neural network data mining. The method comprises the steps that historical drilling data, a leakage stoppage case, an imaging logging real crack width and other data information of a target block are c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI FANG, LI LIZONG, ZUO FUYIN, SU JUNLIN, LUO PINGYA, HUANG JINJUN, QIN ZUHAI, ZHAO YANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI FANG
LI LIZONG
ZUO FUYIN
SU JUNLIN
LUO PINGYA
HUANG JINJUN
QIN ZUHAI
ZHAO YANG
description The embodiment of the invention provides a drilling leakage crack width prediction method based on neural network data mining. The method comprises the steps that historical drilling data, a leakage stoppage case, an imaging logging real crack width and other data information of a target block are collected; data preprocessing is carried out on the collected data information, wherein the preprocessing content comprises data cleaning, integration and conversion; the preprocessed historical drilling data is used as input, the crack width is used as output, the imaging logging real crack width isused as a standard value, and a crack width prediction neural network model is obtained through supervision training and optimization; and the drilling instant data related to the target positive drilling well is imported into the neural network model, and the model automatically judges the corresponding well depth crack width at the moment. By utilizing the technical scheme provided by the embodiment of the invention, t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110952978A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110952978A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110952978A3</originalsourceid><addsrcrecordid>eNrjZAhyKcrMycnMS1fISU3MTkxPVUguSkzOVijPTCnJUCgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDy81JLixJzgFRJeX5RtkJKYkmiQm5mHtAkHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJwK1BXv7GdoaGBpamRpbuFoTIwaAA2TOAs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Drilling leakage crack width prediction method based on neural network data mining</title><source>esp@cenet</source><creator>LI FANG ; LI LIZONG ; ZUO FUYIN ; SU JUNLIN ; LUO PINGYA ; HUANG JINJUN ; QIN ZUHAI ; ZHAO YANG</creator><creatorcontrib>LI FANG ; LI LIZONG ; ZUO FUYIN ; SU JUNLIN ; LUO PINGYA ; HUANG JINJUN ; QIN ZUHAI ; ZHAO YANG</creatorcontrib><description>The embodiment of the invention provides a drilling leakage crack width prediction method based on neural network data mining. The method comprises the steps that historical drilling data, a leakage stoppage case, an imaging logging real crack width and other data information of a target block are collected; data preprocessing is carried out on the collected data information, wherein the preprocessing content comprises data cleaning, integration and conversion; the preprocessed historical drilling data is used as input, the crack width is used as output, the imaging logging real crack width isused as a standard value, and a crack width prediction neural network model is obtained through supervision training and optimization; and the drilling instant data related to the target positive drilling well is imported into the neural network model, and the model automatically judges the corresponding well depth crack width at the moment. By utilizing the technical scheme provided by the embodiment of the invention, t</description><language>chi ; eng</language><subject>EARTH DRILLING ; EARTH DRILLING, e.g. DEEP DRILLING ; FIXED CONSTRUCTIONS ; MINING ; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200403&amp;DB=EPODOC&amp;CC=CN&amp;NR=110952978A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200403&amp;DB=EPODOC&amp;CC=CN&amp;NR=110952978A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI FANG</creatorcontrib><creatorcontrib>LI LIZONG</creatorcontrib><creatorcontrib>ZUO FUYIN</creatorcontrib><creatorcontrib>SU JUNLIN</creatorcontrib><creatorcontrib>LUO PINGYA</creatorcontrib><creatorcontrib>HUANG JINJUN</creatorcontrib><creatorcontrib>QIN ZUHAI</creatorcontrib><creatorcontrib>ZHAO YANG</creatorcontrib><title>Drilling leakage crack width prediction method based on neural network data mining</title><description>The embodiment of the invention provides a drilling leakage crack width prediction method based on neural network data mining. The method comprises the steps that historical drilling data, a leakage stoppage case, an imaging logging real crack width and other data information of a target block are collected; data preprocessing is carried out on the collected data information, wherein the preprocessing content comprises data cleaning, integration and conversion; the preprocessed historical drilling data is used as input, the crack width is used as output, the imaging logging real crack width isused as a standard value, and a crack width prediction neural network model is obtained through supervision training and optimization; and the drilling instant data related to the target positive drilling well is imported into the neural network model, and the model automatically judges the corresponding well depth crack width at the moment. By utilizing the technical scheme provided by the embodiment of the invention, t</description><subject>EARTH DRILLING</subject><subject>EARTH DRILLING, e.g. DEEP DRILLING</subject><subject>FIXED CONSTRUCTIONS</subject><subject>MINING</subject><subject>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAhyKcrMycnMS1fISU3MTkxPVUguSkzOVijPTCnJUCgoSk3JTC7JzM9TyE0tychPUUhKLE5NUQDy81JLixJzgFRJeX5RtkJKYkmiQm5mHtAkHgbWtMSc4lReKM3NoOjmGuLsoZtakB-fWlyQmJwK1BXv7GdoaGBpamRpbuFoTIwaAA2TOAs</recordid><startdate>20200403</startdate><enddate>20200403</enddate><creator>LI FANG</creator><creator>LI LIZONG</creator><creator>ZUO FUYIN</creator><creator>SU JUNLIN</creator><creator>LUO PINGYA</creator><creator>HUANG JINJUN</creator><creator>QIN ZUHAI</creator><creator>ZHAO YANG</creator><scope>EVB</scope></search><sort><creationdate>20200403</creationdate><title>Drilling leakage crack width prediction method based on neural network data mining</title><author>LI FANG ; LI LIZONG ; ZUO FUYIN ; SU JUNLIN ; LUO PINGYA ; HUANG JINJUN ; QIN ZUHAI ; ZHAO YANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110952978A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>EARTH DRILLING</topic><topic>EARTH DRILLING, e.g. DEEP DRILLING</topic><topic>FIXED CONSTRUCTIONS</topic><topic>MINING</topic><topic>OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI FANG</creatorcontrib><creatorcontrib>LI LIZONG</creatorcontrib><creatorcontrib>ZUO FUYIN</creatorcontrib><creatorcontrib>SU JUNLIN</creatorcontrib><creatorcontrib>LUO PINGYA</creatorcontrib><creatorcontrib>HUANG JINJUN</creatorcontrib><creatorcontrib>QIN ZUHAI</creatorcontrib><creatorcontrib>ZHAO YANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI FANG</au><au>LI LIZONG</au><au>ZUO FUYIN</au><au>SU JUNLIN</au><au>LUO PINGYA</au><au>HUANG JINJUN</au><au>QIN ZUHAI</au><au>ZHAO YANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Drilling leakage crack width prediction method based on neural network data mining</title><date>2020-04-03</date><risdate>2020</risdate><abstract>The embodiment of the invention provides a drilling leakage crack width prediction method based on neural network data mining. The method comprises the steps that historical drilling data, a leakage stoppage case, an imaging logging real crack width and other data information of a target block are collected; data preprocessing is carried out on the collected data information, wherein the preprocessing content comprises data cleaning, integration and conversion; the preprocessed historical drilling data is used as input, the crack width is used as output, the imaging logging real crack width isused as a standard value, and a crack width prediction neural network model is obtained through supervision training and optimization; and the drilling instant data related to the target positive drilling well is imported into the neural network model, and the model automatically judges the corresponding well depth crack width at the moment. By utilizing the technical scheme provided by the embodiment of the invention, t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110952978A
source esp@cenet
subjects EARTH DRILLING
EARTH DRILLING, e.g. DEEP DRILLING
FIXED CONSTRUCTIONS
MINING
OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR ASLURRY OF MINERALS FROM WELLS
title Drilling leakage crack width prediction method based on neural network data mining
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20FANG&rft.date=2020-04-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110952978A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true