sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition

The invention provides a sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition. The scheme is realized from six aspectsof deep learning environment construction, generative adversarial network framework construction, que...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU SHOUWEN, CHEN SHASHA, WEN BINGBING, LIU YI, LI FAN, LIAO YUKUN, SHANGGUAN ZHAOHUI, YING JUNYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU SHOUWEN
CHEN SHASHA
WEN BINGBING
LIU YI
LI FAN
LIAO YUKUN
SHANGGUAN ZHAOHUI
YING JUNYU
description The invention provides a sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition. The scheme is realized from six aspectsof deep learning environment construction, generative adversarial network framework construction, questioning sample meta-semantic decomposition, response sample semantic cutting, response sample meta-semantic decomposition and response sample set expansion. Through the steps of establishing a deep learning training environment and a generative adversarial network framework, extracting meta-semantics of response samples of questioning samples and the like, enhancement of a generative model training sample set is finally realized. 本发明提供一种基于元语义分解的电力客服留言生成模型样本处理系统及方法。本发明从"深度学习环境搭建、生成对抗网络框架搭建、提问样本元语义分解、应答样本语义切割、应答样本元语义分解、应答样本集扩充"六个方面来实现此方案,通过搭建深度学习训练环境与生成对抗网络框架,接着通过对提问样本的应答样本的元语义提取等步骤,最终实现生成模型训练样本集的增强。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110929085A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110929085A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110929085A3</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRbtxIeodxgMUWkWwSymKK1fuy5h8a6DJhExUPID3toIHcPXfh8ebFm9lHwdQTGKg6kJP-tIMTxwseeSbWLpKIgwwOTlDUZ5IZO6axY-gSA9nMKqq3IN6BCTOTgJ5sRjowgpL34vMpcJzyGPGwoiPou6rzovJlQfF4rezYnnYn9tjiSgdNLIZq7lrT3VdNaum2m5263-cD4qPTE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition</title><source>esp@cenet</source><creator>LIU SHOUWEN ; CHEN SHASHA ; WEN BINGBING ; LIU YI ; LI FAN ; LIAO YUKUN ; SHANGGUAN ZHAOHUI ; YING JUNYU</creator><creatorcontrib>LIU SHOUWEN ; CHEN SHASHA ; WEN BINGBING ; LIU YI ; LI FAN ; LIAO YUKUN ; SHANGGUAN ZHAOHUI ; YING JUNYU</creatorcontrib><description>The invention provides a sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition. The scheme is realized from six aspectsof deep learning environment construction, generative adversarial network framework construction, questioning sample meta-semantic decomposition, response sample semantic cutting, response sample meta-semantic decomposition and response sample set expansion. Through the steps of establishing a deep learning training environment and a generative adversarial network framework, extracting meta-semantics of response samples of questioning samples and the like, enhancement of a generative model training sample set is finally realized. 本发明提供一种基于元语义分解的电力客服留言生成模型样本处理系统及方法。本发明从"深度学习环境搭建、生成对抗网络框架搭建、提问样本元语义分解、应答样本语义切割、应答样本元语义分解、应答样本集扩充"六个方面来实现此方案,通过搭建深度学习训练环境与生成对抗网络框架,接着通过对提问样本的应答样本的元语义提取等步骤,最终实现生成模型训练样本集的增强。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200327&amp;DB=EPODOC&amp;CC=CN&amp;NR=110929085A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200327&amp;DB=EPODOC&amp;CC=CN&amp;NR=110929085A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU SHOUWEN</creatorcontrib><creatorcontrib>CHEN SHASHA</creatorcontrib><creatorcontrib>WEN BINGBING</creatorcontrib><creatorcontrib>LIU YI</creatorcontrib><creatorcontrib>LI FAN</creatorcontrib><creatorcontrib>LIAO YUKUN</creatorcontrib><creatorcontrib>SHANGGUAN ZHAOHUI</creatorcontrib><creatorcontrib>YING JUNYU</creatorcontrib><title>sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition</title><description>The invention provides a sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition. The scheme is realized from six aspectsof deep learning environment construction, generative adversarial network framework construction, questioning sample meta-semantic decomposition, response sample semantic cutting, response sample meta-semantic decomposition and response sample set expansion. Through the steps of establishing a deep learning training environment and a generative adversarial network framework, extracting meta-semantics of response samples of questioning samples and the like, enhancement of a generative model training sample set is finally realized. 本发明提供一种基于元语义分解的电力客服留言生成模型样本处理系统及方法。本发明从"深度学习环境搭建、生成对抗网络框架搭建、提问样本元语义分解、应答样本语义切割、应答样本元语义分解、应答样本集扩充"六个方面来实现此方案,通过搭建深度学习训练环境与生成对抗网络框架,接着通过对提问样本的应答样本的元语义提取等步骤,最终实现生成模型训练样本集的增强。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjEEKwjAQRbtxIeodxgMUWkWwSymKK1fuy5h8a6DJhExUPID3toIHcPXfh8ebFm9lHwdQTGKg6kJP-tIMTxwseeSbWLpKIgwwOTlDUZ5IZO6axY-gSA9nMKqq3IN6BCTOTgJ5sRjowgpL34vMpcJzyGPGwoiPou6rzovJlQfF4rezYnnYn9tjiSgdNLIZq7lrT3VdNaum2m5263-cD4qPTE8</recordid><startdate>20200327</startdate><enddate>20200327</enddate><creator>LIU SHOUWEN</creator><creator>CHEN SHASHA</creator><creator>WEN BINGBING</creator><creator>LIU YI</creator><creator>LI FAN</creator><creator>LIAO YUKUN</creator><creator>SHANGGUAN ZHAOHUI</creator><creator>YING JUNYU</creator><scope>EVB</scope></search><sort><creationdate>20200327</creationdate><title>sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition</title><author>LIU SHOUWEN ; CHEN SHASHA ; WEN BINGBING ; LIU YI ; LI FAN ; LIAO YUKUN ; SHANGGUAN ZHAOHUI ; YING JUNYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110929085A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU SHOUWEN</creatorcontrib><creatorcontrib>CHEN SHASHA</creatorcontrib><creatorcontrib>WEN BINGBING</creatorcontrib><creatorcontrib>LIU YI</creatorcontrib><creatorcontrib>LI FAN</creatorcontrib><creatorcontrib>LIAO YUKUN</creatorcontrib><creatorcontrib>SHANGGUAN ZHAOHUI</creatorcontrib><creatorcontrib>YING JUNYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU SHOUWEN</au><au>CHEN SHASHA</au><au>WEN BINGBING</au><au>LIU YI</au><au>LI FAN</au><au>LIAO YUKUN</au><au>SHANGGUAN ZHAOHUI</au><au>YING JUNYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition</title><date>2020-03-27</date><risdate>2020</risdate><abstract>The invention provides a sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition. The scheme is realized from six aspectsof deep learning environment construction, generative adversarial network framework construction, questioning sample meta-semantic decomposition, response sample semantic cutting, response sample meta-semantic decomposition and response sample set expansion. Through the steps of establishing a deep learning training environment and a generative adversarial network framework, extracting meta-semantics of response samples of questioning samples and the like, enhancement of a generative model training sample set is finally realized. 本发明提供一种基于元语义分解的电力客服留言生成模型样本处理系统及方法。本发明从"深度学习环境搭建、生成对抗网络框架搭建、提问样本元语义分解、应答样本语义切割、应答样本元语义分解、应答样本集扩充"六个方面来实现此方案,通过搭建深度学习训练环境与生成对抗网络框架,接着通过对提问样本的应答样本的元语义提取等步骤,最终实现生成模型训练样本集的增强。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110929085A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title sample processing system and method for electric power customer service message generation model based on meta-semantic decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20SHOUWEN&rft.date=2020-03-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110929085A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true