Police affair learning content analysis and classification method based on semantic analysis
The invention relates to a police affair learning content analysis and classification method based on semantic analysis. The police affair learning content analysis and classification method adopts brand new topic policies, analyzes teaching articles, introduces vector concepts, and obtains test que...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN JIMIN JIANG LINSHENG ZOU MING ZHU SIRUI CHEN XINXIN MA QINYAN |
description | The invention relates to a police affair learning content analysis and classification method based on semantic analysis. The police affair learning content analysis and classification method adopts brand new topic policies, analyzes teaching articles, introduces vector concepts, and obtains test questions associated with the teaching article through the cosine distance between each test question vector in a police test question bank and the teaching article vector, and the obtained each test question is used for the recommendation test of the teaching article after learning, so that as the test questions are combined with the teaching article, direct response of the test questions to teaching is realized, and the learning result is detected in time, and the learning efficiency is improved.
本发明涉及一种基于语义分析的警务学习内容分析划归方法,采用全新主题策略,针对教学文章进行分析,引入向量概念,通过警务试题库中各试题向量与教学文章向量之间的余弦距离,获得与教学文章相联系对应的各试题,用于该教学文章学习后的推荐测试,如此将试题与教学文章相结合,实现试题对教学的直接响应,及时对学习结果进行检测,提高学习效率。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110909132A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110909132A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110909132A3</originalsourceid><addsrcrecordid>eNqNizEKwkAQRdNYiHqH8QBC1lQpJShWYmEphHF2Vgc2syEzjbc3hVhb_ffg_WV1v5YsxIApoUyQGScVfQIVdVYHVMxvE5shAmU0kySELkVhYH-VCA80jjC78YDqQr_TulokzMab766q7el46847HkvPNiKxsvfdJYS6rdvQ7A_NP80H2JI8Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Police affair learning content analysis and classification method based on semantic analysis</title><source>esp@cenet</source><creator>CHEN JIMIN ; JIANG LINSHENG ; ZOU MING ; ZHU SIRUI ; CHEN XINXIN ; MA QINYAN</creator><creatorcontrib>CHEN JIMIN ; JIANG LINSHENG ; ZOU MING ; ZHU SIRUI ; CHEN XINXIN ; MA QINYAN</creatorcontrib><description>The invention relates to a police affair learning content analysis and classification method based on semantic analysis. The police affair learning content analysis and classification method adopts brand new topic policies, analyzes teaching articles, introduces vector concepts, and obtains test questions associated with the teaching article through the cosine distance between each test question vector in a police test question bank and the teaching article vector, and the obtained each test question is used for the recommendation test of the teaching article after learning, so that as the test questions are combined with the teaching article, direct response of the test questions to teaching is realized, and the learning result is detected in time, and the learning efficiency is improved.
本发明涉及一种基于语义分析的警务学习内容分析划归方法,采用全新主题策略,针对教学文章进行分析,引入向量概念,通过警务试题库中各试题向量与教学文章向量之间的余弦距离,获得与教学文章相联系对应的各试题,用于该教学文章学习后的推荐测试,如此将试题与教学文章相结合,实现试题对教学的直接响应,及时对学习结果进行检测,提高学习效率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200324&DB=EPODOC&CC=CN&NR=110909132A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200324&DB=EPODOC&CC=CN&NR=110909132A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN JIMIN</creatorcontrib><creatorcontrib>JIANG LINSHENG</creatorcontrib><creatorcontrib>ZOU MING</creatorcontrib><creatorcontrib>ZHU SIRUI</creatorcontrib><creatorcontrib>CHEN XINXIN</creatorcontrib><creatorcontrib>MA QINYAN</creatorcontrib><title>Police affair learning content analysis and classification method based on semantic analysis</title><description>The invention relates to a police affair learning content analysis and classification method based on semantic analysis. The police affair learning content analysis and classification method adopts brand new topic policies, analyzes teaching articles, introduces vector concepts, and obtains test questions associated with the teaching article through the cosine distance between each test question vector in a police test question bank and the teaching article vector, and the obtained each test question is used for the recommendation test of the teaching article after learning, so that as the test questions are combined with the teaching article, direct response of the test questions to teaching is realized, and the learning result is detected in time, and the learning efficiency is improved.
本发明涉及一种基于语义分析的警务学习内容分析划归方法,采用全新主题策略,针对教学文章进行分析,引入向量概念,通过警务试题库中各试题向量与教学文章向量之间的余弦距离,获得与教学文章相联系对应的各试题,用于该教学文章学习后的推荐测试,如此将试题与教学文章相结合,实现试题对教学的直接响应,及时对学习结果进行检测,提高学习效率。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAQRdNYiHqH8QBC1lQpJShWYmEphHF2Vgc2syEzjbc3hVhb_ffg_WV1v5YsxIApoUyQGScVfQIVdVYHVMxvE5shAmU0kySELkVhYH-VCA80jjC78YDqQr_TulokzMab766q7el46847HkvPNiKxsvfdJYS6rdvQ7A_NP80H2JI8Hw</recordid><startdate>20200324</startdate><enddate>20200324</enddate><creator>CHEN JIMIN</creator><creator>JIANG LINSHENG</creator><creator>ZOU MING</creator><creator>ZHU SIRUI</creator><creator>CHEN XINXIN</creator><creator>MA QINYAN</creator><scope>EVB</scope></search><sort><creationdate>20200324</creationdate><title>Police affair learning content analysis and classification method based on semantic analysis</title><author>CHEN JIMIN ; JIANG LINSHENG ; ZOU MING ; ZHU SIRUI ; CHEN XINXIN ; MA QINYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110909132A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN JIMIN</creatorcontrib><creatorcontrib>JIANG LINSHENG</creatorcontrib><creatorcontrib>ZOU MING</creatorcontrib><creatorcontrib>ZHU SIRUI</creatorcontrib><creatorcontrib>CHEN XINXIN</creatorcontrib><creatorcontrib>MA QINYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN JIMIN</au><au>JIANG LINSHENG</au><au>ZOU MING</au><au>ZHU SIRUI</au><au>CHEN XINXIN</au><au>MA QINYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Police affair learning content analysis and classification method based on semantic analysis</title><date>2020-03-24</date><risdate>2020</risdate><abstract>The invention relates to a police affair learning content analysis and classification method based on semantic analysis. The police affair learning content analysis and classification method adopts brand new topic policies, analyzes teaching articles, introduces vector concepts, and obtains test questions associated with the teaching article through the cosine distance between each test question vector in a police test question bank and the teaching article vector, and the obtained each test question is used for the recommendation test of the teaching article after learning, so that as the test questions are combined with the teaching article, direct response of the test questions to teaching is realized, and the learning result is detected in time, and the learning efficiency is improved.
本发明涉及一种基于语义分析的警务学习内容分析划归方法,采用全新主题策略,针对教学文章进行分析,引入向量概念,通过警务试题库中各试题向量与教学文章向量之间的余弦距离,获得与教学文章相联系对应的各试题,用于该教学文章学习后的推荐测试,如此将试题与教学文章相结合,实现试题对教学的直接响应,及时对学习结果进行检测,提高学习效率。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110909132A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Police affair learning content analysis and classification method based on semantic analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20JIMIN&rft.date=2020-03-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110909132A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |