Cross-domain emotion classification system and method based on hierarchical attention mechanism
The invention relates to a cross-domain emotion classification system based on a hierarchical attention mechanism, and the system comprises a text preprocessing module which is used for the characterization of a cross-domain text; a pivot feature extraction module, used for learning a feature repres...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIAO XIANGWEN CHEN ZHIHAO WEN YUHAN CHEN GUIXU CHEN KAIZHI |
description | The invention relates to a cross-domain emotion classification system based on a hierarchical attention mechanism, and the system comprises a text preprocessing module which is used for the characterization of a cross-domain text; a pivot feature extraction module, used for learning a feature representation space adapted to the field to obtain pivot feature document representation of the source field and the target field; a non-pivot feature extraction module, used for acquiring non-pivot feature representation; and an emotion category output module, used for obtaining a final emotion classification result. According to the method, efficient cross-domain emotion classification is realized, the cross-domain emotion classification precision is improved, and the consumption of manual time andenergy is reduced.
本发明涉及一种基于分层注意力机制的跨领域情感分类系统,包括:文本预处理模块,用于对跨领域文本进行特征化处理;枢轴特征提取模块,用于学习领域适应的特征表示空间,得到源领域与目标领域的枢轴特征文档表示;非枢轴特征提取模块,用于获取非枢轴特征表示;情感类别输出模块,用于获取最终的情感分类结果。本发明实现了高效的跨领域情感分类,提高了跨领域情感分类精度并减少人工时间精力的消耗。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110851601A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110851601A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110851601A3</originalsourceid><addsrcrecordid>eNqNizEKAjEQRbexEPUO4wEWNohiuwTFyso-jMksCSQzSyaNt3dZPIDV5_He33bOVlHtgxRMDFSkJWHwGVXTlDyuqB9tVAA5QKEWJcAblQIsKiaqWH1c0gzYGvH6KOQjctKy7zYTZqXDb3fd8X572UdPszjSGT0xNWefxgzXs7kMZjz903wB1yY9iQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross-domain emotion classification system and method based on hierarchical attention mechanism</title><source>esp@cenet</source><creator>LIAO XIANGWEN ; CHEN ZHIHAO ; WEN YUHAN ; CHEN GUIXU ; CHEN KAIZHI</creator><creatorcontrib>LIAO XIANGWEN ; CHEN ZHIHAO ; WEN YUHAN ; CHEN GUIXU ; CHEN KAIZHI</creatorcontrib><description>The invention relates to a cross-domain emotion classification system based on a hierarchical attention mechanism, and the system comprises a text preprocessing module which is used for the characterization of a cross-domain text; a pivot feature extraction module, used for learning a feature representation space adapted to the field to obtain pivot feature document representation of the source field and the target field; a non-pivot feature extraction module, used for acquiring non-pivot feature representation; and an emotion category output module, used for obtaining a final emotion classification result. According to the method, efficient cross-domain emotion classification is realized, the cross-domain emotion classification precision is improved, and the consumption of manual time andenergy is reduced.
本发明涉及一种基于分层注意力机制的跨领域情感分类系统,包括:文本预处理模块,用于对跨领域文本进行特征化处理;枢轴特征提取模块,用于学习领域适应的特征表示空间,得到源领域与目标领域的枢轴特征文档表示;非枢轴特征提取模块,用于获取非枢轴特征表示;情感类别输出模块,用于获取最终的情感分类结果。本发明实现了高效的跨领域情感分类,提高了跨领域情感分类精度并减少人工时间精力的消耗。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200228&DB=EPODOC&CC=CN&NR=110851601A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200228&DB=EPODOC&CC=CN&NR=110851601A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIAO XIANGWEN</creatorcontrib><creatorcontrib>CHEN ZHIHAO</creatorcontrib><creatorcontrib>WEN YUHAN</creatorcontrib><creatorcontrib>CHEN GUIXU</creatorcontrib><creatorcontrib>CHEN KAIZHI</creatorcontrib><title>Cross-domain emotion classification system and method based on hierarchical attention mechanism</title><description>The invention relates to a cross-domain emotion classification system based on a hierarchical attention mechanism, and the system comprises a text preprocessing module which is used for the characterization of a cross-domain text; a pivot feature extraction module, used for learning a feature representation space adapted to the field to obtain pivot feature document representation of the source field and the target field; a non-pivot feature extraction module, used for acquiring non-pivot feature representation; and an emotion category output module, used for obtaining a final emotion classification result. According to the method, efficient cross-domain emotion classification is realized, the cross-domain emotion classification precision is improved, and the consumption of manual time andenergy is reduced.
本发明涉及一种基于分层注意力机制的跨领域情感分类系统,包括:文本预处理模块,用于对跨领域文本进行特征化处理;枢轴特征提取模块,用于学习领域适应的特征表示空间,得到源领域与目标领域的枢轴特征文档表示;非枢轴特征提取模块,用于获取非枢轴特征表示;情感类别输出模块,用于获取最终的情感分类结果。本发明实现了高效的跨领域情感分类,提高了跨领域情感分类精度并减少人工时间精力的消耗。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKAjEQRbexEPUO4wEWNohiuwTFyso-jMksCSQzSyaNt3dZPIDV5_He33bOVlHtgxRMDFSkJWHwGVXTlDyuqB9tVAA5QKEWJcAblQIsKiaqWH1c0gzYGvH6KOQjctKy7zYTZqXDb3fd8X572UdPszjSGT0xNWefxgzXs7kMZjz903wB1yY9iQ</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>LIAO XIANGWEN</creator><creator>CHEN ZHIHAO</creator><creator>WEN YUHAN</creator><creator>CHEN GUIXU</creator><creator>CHEN KAIZHI</creator><scope>EVB</scope></search><sort><creationdate>20200228</creationdate><title>Cross-domain emotion classification system and method based on hierarchical attention mechanism</title><author>LIAO XIANGWEN ; CHEN ZHIHAO ; WEN YUHAN ; CHEN GUIXU ; CHEN KAIZHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110851601A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIAO XIANGWEN</creatorcontrib><creatorcontrib>CHEN ZHIHAO</creatorcontrib><creatorcontrib>WEN YUHAN</creatorcontrib><creatorcontrib>CHEN GUIXU</creatorcontrib><creatorcontrib>CHEN KAIZHI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIAO XIANGWEN</au><au>CHEN ZHIHAO</au><au>WEN YUHAN</au><au>CHEN GUIXU</au><au>CHEN KAIZHI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross-domain emotion classification system and method based on hierarchical attention mechanism</title><date>2020-02-28</date><risdate>2020</risdate><abstract>The invention relates to a cross-domain emotion classification system based on a hierarchical attention mechanism, and the system comprises a text preprocessing module which is used for the characterization of a cross-domain text; a pivot feature extraction module, used for learning a feature representation space adapted to the field to obtain pivot feature document representation of the source field and the target field; a non-pivot feature extraction module, used for acquiring non-pivot feature representation; and an emotion category output module, used for obtaining a final emotion classification result. According to the method, efficient cross-domain emotion classification is realized, the cross-domain emotion classification precision is improved, and the consumption of manual time andenergy is reduced.
本发明涉及一种基于分层注意力机制的跨领域情感分类系统,包括:文本预处理模块,用于对跨领域文本进行特征化处理;枢轴特征提取模块,用于学习领域适应的特征表示空间,得到源领域与目标领域的枢轴特征文档表示;非枢轴特征提取模块,用于获取非枢轴特征表示;情感类别输出模块,用于获取最终的情感分类结果。本发明实现了高效的跨领域情感分类,提高了跨领域情感分类精度并减少人工时间精力的消耗。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110851601A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Cross-domain emotion classification system and method based on hierarchical attention mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIAO%20XIANGWEN&rft.date=2020-02-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110851601A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |