Cascade target recognition method and system based on deep learning

The invention provides a cascade target recognition method and system based on deep learning, and the method comprises the steps: obtaining a to-be-detected sample of an inspection image, marking a target detection sample, and expanding the number of samples; fusing multiple features of the image en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU DAZHOU, LIU GUANGXIU, LI JIANXIANG, WANG ZHENLI, LI YONG, XU RONGHAO, MU SHIYOU, LIU PIYU, ZHANG XU, WANG WANGUO, ZHAO JINLONG, LIU YUE, LI ZHENYU, JIA YAJUN, XU WEI, GUO RUI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU DAZHOU
LIU GUANGXIU
LI JIANXIANG
WANG ZHENLI
LI YONG
XU RONGHAO
MU SHIYOU
LIU PIYU
ZHANG XU
WANG WANGUO
ZHAO JINLONG
LIU YUE
LI ZHENYU
JIA YAJUN
XU WEI
GUO RUI
description The invention provides a cascade target recognition method and system based on deep learning, and the method comprises the steps: obtaining a to-be-detected sample of an inspection image, marking a target detection sample, and expanding the number of samples; fusing multiple features of the image enhancement data to carry out a multi-stage deep learning detection algorithm, realizing significant equipment detection for a target with a large proportion, and eliminating noise interference of a complex background on the detection algorithm. Multi-stage deep learning algorithm detection is carriedout by fusing multiple features of image enhancement data, so that the detection accuracy of deep learning in small target detection is improved, and the influence of image quality on the detection algorithm is reduced. 本公开提供了基于深度学习的级联目标识别方法及系统,获取巡检图像的待检测样本,对目标检测样本标记,并对样本数量进行扩充;融合图像增强数据的多特征进行多级深度学习检测算法,实现针对占比较大目标的显著设备检测,剔除复杂背景对检测算法的噪声干扰;融合图像增强数据的多特征进行多级深度学习算法检测,提高深度学习在小目标检测中的检测准确率,降低了图像质量对检测算法的影响。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110688925A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110688925A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110688925A3</originalsourceid><addsrcrecordid>eNqNyjEOwjAMRuEuDAi4gzkAEgWByogiEBMTe2WSnzRS60SxF24PAwdgesP35o1zrJ4DyLhGGFX4HCVZykITbMiBWALpWw0TPVkR6EsBKDSCqySJy2b24lGx-nXRrK-Xh7ttUHIPLewhsN7d23Z77LrT7nDe__N8AGZ1Mkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cascade target recognition method and system based on deep learning</title><source>esp@cenet</source><creator>ZHOU DAZHOU ; LIU GUANGXIU ; LI JIANXIANG ; WANG ZHENLI ; LI YONG ; XU RONGHAO ; MU SHIYOU ; LIU PIYU ; ZHANG XU ; WANG WANGUO ; ZHAO JINLONG ; LIU YUE ; LI ZHENYU ; JIA YAJUN ; XU WEI ; GUO RUI</creator><creatorcontrib>ZHOU DAZHOU ; LIU GUANGXIU ; LI JIANXIANG ; WANG ZHENLI ; LI YONG ; XU RONGHAO ; MU SHIYOU ; LIU PIYU ; ZHANG XU ; WANG WANGUO ; ZHAO JINLONG ; LIU YUE ; LI ZHENYU ; JIA YAJUN ; XU WEI ; GUO RUI</creatorcontrib><description>The invention provides a cascade target recognition method and system based on deep learning, and the method comprises the steps: obtaining a to-be-detected sample of an inspection image, marking a target detection sample, and expanding the number of samples; fusing multiple features of the image enhancement data to carry out a multi-stage deep learning detection algorithm, realizing significant equipment detection for a target with a large proportion, and eliminating noise interference of a complex background on the detection algorithm. Multi-stage deep learning algorithm detection is carriedout by fusing multiple features of image enhancement data, so that the detection accuracy of deep learning in small target detection is improved, and the influence of image quality on the detection algorithm is reduced. 本公开提供了基于深度学习的级联目标识别方法及系统,获取巡检图像的待检测样本,对目标检测样本标记,并对样本数量进行扩充;融合图像增强数据的多特征进行多级深度学习检测算法,实现针对占比较大目标的显著设备检测,剔除复杂背景对检测算法的噪声干扰;融合图像增强数据的多特征进行多级深度学习算法检测,提高深度学习在小目标检测中的检测准确率,降低了图像质量对检测算法的影响。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200114&amp;DB=EPODOC&amp;CC=CN&amp;NR=110688925A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20200114&amp;DB=EPODOC&amp;CC=CN&amp;NR=110688925A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU DAZHOU</creatorcontrib><creatorcontrib>LIU GUANGXIU</creatorcontrib><creatorcontrib>LI JIANXIANG</creatorcontrib><creatorcontrib>WANG ZHENLI</creatorcontrib><creatorcontrib>LI YONG</creatorcontrib><creatorcontrib>XU RONGHAO</creatorcontrib><creatorcontrib>MU SHIYOU</creatorcontrib><creatorcontrib>LIU PIYU</creatorcontrib><creatorcontrib>ZHANG XU</creatorcontrib><creatorcontrib>WANG WANGUO</creatorcontrib><creatorcontrib>ZHAO JINLONG</creatorcontrib><creatorcontrib>LIU YUE</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>JIA YAJUN</creatorcontrib><creatorcontrib>XU WEI</creatorcontrib><creatorcontrib>GUO RUI</creatorcontrib><title>Cascade target recognition method and system based on deep learning</title><description>The invention provides a cascade target recognition method and system based on deep learning, and the method comprises the steps: obtaining a to-be-detected sample of an inspection image, marking a target detection sample, and expanding the number of samples; fusing multiple features of the image enhancement data to carry out a multi-stage deep learning detection algorithm, realizing significant equipment detection for a target with a large proportion, and eliminating noise interference of a complex background on the detection algorithm. Multi-stage deep learning algorithm detection is carriedout by fusing multiple features of image enhancement data, so that the detection accuracy of deep learning in small target detection is improved, and the influence of image quality on the detection algorithm is reduced. 本公开提供了基于深度学习的级联目标识别方法及系统,获取巡检图像的待检测样本,对目标检测样本标记,并对样本数量进行扩充;融合图像增强数据的多特征进行多级深度学习检测算法,实现针对占比较大目标的显著设备检测,剔除复杂背景对检测算法的噪声干扰;融合图像增强数据的多特征进行多级深度学习算法检测,提高深度学习在小目标检测中的检测准确率,降低了图像质量对检测算法的影响。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEOwjAMRuEuDAi4gzkAEgWByogiEBMTe2WSnzRS60SxF24PAwdgesP35o1zrJ4DyLhGGFX4HCVZykITbMiBWALpWw0TPVkR6EsBKDSCqySJy2b24lGx-nXRrK-Xh7ttUHIPLewhsN7d23Z77LrT7nDe__N8AGZ1Mkk</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>ZHOU DAZHOU</creator><creator>LIU GUANGXIU</creator><creator>LI JIANXIANG</creator><creator>WANG ZHENLI</creator><creator>LI YONG</creator><creator>XU RONGHAO</creator><creator>MU SHIYOU</creator><creator>LIU PIYU</creator><creator>ZHANG XU</creator><creator>WANG WANGUO</creator><creator>ZHAO JINLONG</creator><creator>LIU YUE</creator><creator>LI ZHENYU</creator><creator>JIA YAJUN</creator><creator>XU WEI</creator><creator>GUO RUI</creator><scope>EVB</scope></search><sort><creationdate>20200114</creationdate><title>Cascade target recognition method and system based on deep learning</title><author>ZHOU DAZHOU ; LIU GUANGXIU ; LI JIANXIANG ; WANG ZHENLI ; LI YONG ; XU RONGHAO ; MU SHIYOU ; LIU PIYU ; ZHANG XU ; WANG WANGUO ; ZHAO JINLONG ; LIU YUE ; LI ZHENYU ; JIA YAJUN ; XU WEI ; GUO RUI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110688925A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU DAZHOU</creatorcontrib><creatorcontrib>LIU GUANGXIU</creatorcontrib><creatorcontrib>LI JIANXIANG</creatorcontrib><creatorcontrib>WANG ZHENLI</creatorcontrib><creatorcontrib>LI YONG</creatorcontrib><creatorcontrib>XU RONGHAO</creatorcontrib><creatorcontrib>MU SHIYOU</creatorcontrib><creatorcontrib>LIU PIYU</creatorcontrib><creatorcontrib>ZHANG XU</creatorcontrib><creatorcontrib>WANG WANGUO</creatorcontrib><creatorcontrib>ZHAO JINLONG</creatorcontrib><creatorcontrib>LIU YUE</creatorcontrib><creatorcontrib>LI ZHENYU</creatorcontrib><creatorcontrib>JIA YAJUN</creatorcontrib><creatorcontrib>XU WEI</creatorcontrib><creatorcontrib>GUO RUI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU DAZHOU</au><au>LIU GUANGXIU</au><au>LI JIANXIANG</au><au>WANG ZHENLI</au><au>LI YONG</au><au>XU RONGHAO</au><au>MU SHIYOU</au><au>LIU PIYU</au><au>ZHANG XU</au><au>WANG WANGUO</au><au>ZHAO JINLONG</au><au>LIU YUE</au><au>LI ZHENYU</au><au>JIA YAJUN</au><au>XU WEI</au><au>GUO RUI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cascade target recognition method and system based on deep learning</title><date>2020-01-14</date><risdate>2020</risdate><abstract>The invention provides a cascade target recognition method and system based on deep learning, and the method comprises the steps: obtaining a to-be-detected sample of an inspection image, marking a target detection sample, and expanding the number of samples; fusing multiple features of the image enhancement data to carry out a multi-stage deep learning detection algorithm, realizing significant equipment detection for a target with a large proportion, and eliminating noise interference of a complex background on the detection algorithm. Multi-stage deep learning algorithm detection is carriedout by fusing multiple features of image enhancement data, so that the detection accuracy of deep learning in small target detection is improved, and the influence of image quality on the detection algorithm is reduced. 本公开提供了基于深度学习的级联目标识别方法及系统,获取巡检图像的待检测样本,对目标检测样本标记,并对样本数量进行扩充;融合图像增强数据的多特征进行多级深度学习检测算法,实现针对占比较大目标的显著设备检测,剔除复杂背景对检测算法的噪声干扰;融合图像增强数据的多特征进行多级深度学习算法检测,提高深度学习在小目标检测中的检测准确率,降低了图像质量对检测算法的影响。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110688925A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Cascade target recognition method and system based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20DAZHOU&rft.date=2020-01-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110688925A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true