Big data-based stock market inner-screen transaction behavior identification method
The invention discloses a big data-based stock market inner-screen transaction behavior identification method. The method comprises the following steps of obtaining company related data; calculating the increment of the stock trading volume mean value; if the increment of the stock trading volume me...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TANG WENJIN WU JUNJIE BU HUI LI YINGSEN |
description | The invention discloses a big data-based stock market inner-screen transaction behavior identification method. The method comprises the following steps of obtaining company related data; calculating the increment of the stock trading volume mean value; if the increment of the stock trading volume mean value is greater than a threshold, calculating the increment of the average value of all stock trade volumes of the industry; if the increment of the stock trading volume mean value is less than a threshold, inquiring whether to publish announcements in the earlier stage; calculating the fluctuation amplitude of the stock closing price caused by external announcement; if the fluctuation threshold is not exceeded, calculating whether the weighted average net asset yield of the listed company is lower than the weighted average net asset yield; and if so, acquiring an external announcement of a later listed company, judging whether the external announcement is a good announcement; if so, calculating the maximum ris |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110648231A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110648231A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110648231A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTzAgjEithoUKxvtw2T3jxliZsPu4PkF8QBWDz7evLif5EmBjV3LGYGyRT_QyGmAkagiuewToGSJNbM3iUoten5LTCQBatKJ56-PsD6GZTHr-JWx-nVRrC_nR311mGKDPLGHwpr6Vpab_e6wrcpj9c_zAWeqOLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Big data-based stock market inner-screen transaction behavior identification method</title><source>esp@cenet</source><creator>TANG WENJIN ; WU JUNJIE ; BU HUI ; LI YINGSEN</creator><creatorcontrib>TANG WENJIN ; WU JUNJIE ; BU HUI ; LI YINGSEN</creatorcontrib><description>The invention discloses a big data-based stock market inner-screen transaction behavior identification method. The method comprises the following steps of obtaining company related data; calculating the increment of the stock trading volume mean value; if the increment of the stock trading volume mean value is greater than a threshold, calculating the increment of the average value of all stock trade volumes of the industry; if the increment of the stock trading volume mean value is less than a threshold, inquiring whether to publish announcements in the earlier stage; calculating the fluctuation amplitude of the stock closing price caused by external announcement; if the fluctuation threshold is not exceeded, calculating whether the weighted average net asset yield of the listed company is lower than the weighted average net asset yield; and if so, acquiring an external announcement of a later listed company, judging whether the external announcement is a good announcement; if so, calculating the maximum ris</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200103&DB=EPODOC&CC=CN&NR=110648231A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20200103&DB=EPODOC&CC=CN&NR=110648231A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TANG WENJIN</creatorcontrib><creatorcontrib>WU JUNJIE</creatorcontrib><creatorcontrib>BU HUI</creatorcontrib><creatorcontrib>LI YINGSEN</creatorcontrib><title>Big data-based stock market inner-screen transaction behavior identification method</title><description>The invention discloses a big data-based stock market inner-screen transaction behavior identification method. The method comprises the following steps of obtaining company related data; calculating the increment of the stock trading volume mean value; if the increment of the stock trading volume mean value is greater than a threshold, calculating the increment of the average value of all stock trade volumes of the industry; if the increment of the stock trading volume mean value is less than a threshold, inquiring whether to publish announcements in the earlier stage; calculating the fluctuation amplitude of the stock closing price caused by external announcement; if the fluctuation threshold is not exceeded, calculating whether the weighted average net asset yield of the listed company is lower than the weighted average net asset yield; and if so, acquiring an external announcement of a later listed company, judging whether the external announcement is a good announcement; if so, calculating the maximum ris</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTzAgjEithoUKxvtw2T3jxliZsPu4PkF8QBWDz7evLif5EmBjV3LGYGyRT_QyGmAkagiuewToGSJNbM3iUoten5LTCQBatKJ56-PsD6GZTHr-JWx-nVRrC_nR311mGKDPLGHwpr6Vpab_e6wrcpj9c_zAWeqOLg</recordid><startdate>20200103</startdate><enddate>20200103</enddate><creator>TANG WENJIN</creator><creator>WU JUNJIE</creator><creator>BU HUI</creator><creator>LI YINGSEN</creator><scope>EVB</scope></search><sort><creationdate>20200103</creationdate><title>Big data-based stock market inner-screen transaction behavior identification method</title><author>TANG WENJIN ; WU JUNJIE ; BU HUI ; LI YINGSEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110648231A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2020</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>TANG WENJIN</creatorcontrib><creatorcontrib>WU JUNJIE</creatorcontrib><creatorcontrib>BU HUI</creatorcontrib><creatorcontrib>LI YINGSEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TANG WENJIN</au><au>WU JUNJIE</au><au>BU HUI</au><au>LI YINGSEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Big data-based stock market inner-screen transaction behavior identification method</title><date>2020-01-03</date><risdate>2020</risdate><abstract>The invention discloses a big data-based stock market inner-screen transaction behavior identification method. The method comprises the following steps of obtaining company related data; calculating the increment of the stock trading volume mean value; if the increment of the stock trading volume mean value is greater than a threshold, calculating the increment of the average value of all stock trade volumes of the industry; if the increment of the stock trading volume mean value is less than a threshold, inquiring whether to publish announcements in the earlier stage; calculating the fluctuation amplitude of the stock closing price caused by external announcement; if the fluctuation threshold is not exceeded, calculating whether the weighted average net asset yield of the listed company is lower than the weighted average net asset yield; and if so, acquiring an external announcement of a later listed company, judging whether the external announcement is a good announcement; if so, calculating the maximum ris</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110648231A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Big data-based stock market inner-screen transaction behavior identification method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A30%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TANG%20WENJIN&rft.date=2020-01-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110648231A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |