Fetal ultrasound image recognition method and system based on deep learning

The invention discloses a fetal ultrasonic image recognition method and system based on deep learning. The method comprises the steps that ultrasonic equipment detects and sends fetal ultrasonic parameter information to a data terminal according to a printing operation control instruction; the data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG NAN, LIANG ZHE, XIE HONGNING, XIAN JIANBO, MAO MINGCHUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG NAN
LIANG ZHE
XIE HONGNING
XIAN JIANBO
MAO MINGCHUN
description The invention discloses a fetal ultrasonic image recognition method and system based on deep learning. The method comprises the steps that ultrasonic equipment detects and sends fetal ultrasonic parameter information to a data terminal according to a printing operation control instruction; the data terminal receives and sends the ultrasonic parameter information to a cloud server; the cloud serverreceives the ultrasonic static image and performs segmentation operation on the ultrasonic static image based on a predetermined image segmentation model to obtain segmented sub-images, and inputs the segmented sub-images into a predetermined image classification model to obtain a classification model result; the cloud server sends the classification model result to the main control device; and the main control equipment receives and outputs the classification model result. According to the invention, deep learning can be applied to examination of the fetal ultrasound image, so that the identification efficiency and
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110634125A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110634125A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110634125A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAURuEsDqK-w_UBBGPVXYpFEJzcy7X5TQPJTUjSwbe3gw_gdIbvLNW9Q2VPk6-ZS5zEkAtsQRlDtOKqi0IBdYyGeMbyKRWBXlxgaCYDJPLgLE7sWi3e7As2v67Utrs-29sOKfYoiQcIat8-tN6fm6M-nC7NP88Xabk1ZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Fetal ultrasound image recognition method and system based on deep learning</title><source>esp@cenet</source><creator>WANG NAN ; LIANG ZHE ; XIE HONGNING ; XIAN JIANBO ; MAO MINGCHUN</creator><creatorcontrib>WANG NAN ; LIANG ZHE ; XIE HONGNING ; XIAN JIANBO ; MAO MINGCHUN</creatorcontrib><description>The invention discloses a fetal ultrasonic image recognition method and system based on deep learning. The method comprises the steps that ultrasonic equipment detects and sends fetal ultrasonic parameter information to a data terminal according to a printing operation control instruction; the data terminal receives and sends the ultrasonic parameter information to a cloud server; the cloud serverreceives the ultrasonic static image and performs segmentation operation on the ultrasonic static image based on a predetermined image segmentation model to obtain segmented sub-images, and inputs the segmented sub-images into a predetermined image classification model to obtain a classification model result; the cloud server sends the classification model result to the main control device; and the main control equipment receives and outputs the classification model result. According to the invention, deep learning can be applied to examination of the fetal ultrasound image, so that the identification efficiency and</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191231&amp;DB=EPODOC&amp;CC=CN&amp;NR=110634125A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191231&amp;DB=EPODOC&amp;CC=CN&amp;NR=110634125A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG NAN</creatorcontrib><creatorcontrib>LIANG ZHE</creatorcontrib><creatorcontrib>XIE HONGNING</creatorcontrib><creatorcontrib>XIAN JIANBO</creatorcontrib><creatorcontrib>MAO MINGCHUN</creatorcontrib><title>Fetal ultrasound image recognition method and system based on deep learning</title><description>The invention discloses a fetal ultrasonic image recognition method and system based on deep learning. The method comprises the steps that ultrasonic equipment detects and sends fetal ultrasonic parameter information to a data terminal according to a printing operation control instruction; the data terminal receives and sends the ultrasonic parameter information to a cloud server; the cloud serverreceives the ultrasonic static image and performs segmentation operation on the ultrasonic static image based on a predetermined image segmentation model to obtain segmented sub-images, and inputs the segmented sub-images into a predetermined image classification model to obtain a classification model result; the cloud server sends the classification model result to the main control device; and the main control equipment receives and outputs the classification model result. According to the invention, deep learning can be applied to examination of the fetal ultrasound image, so that the identification efficiency and</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAURuEsDqK-w_UBBGPVXYpFEJzcy7X5TQPJTUjSwbe3gw_gdIbvLNW9Q2VPk6-ZS5zEkAtsQRlDtOKqi0IBdYyGeMbyKRWBXlxgaCYDJPLgLE7sWi3e7As2v67Utrs-29sOKfYoiQcIat8-tN6fm6M-nC7NP88Xabk1ZA</recordid><startdate>20191231</startdate><enddate>20191231</enddate><creator>WANG NAN</creator><creator>LIANG ZHE</creator><creator>XIE HONGNING</creator><creator>XIAN JIANBO</creator><creator>MAO MINGCHUN</creator><scope>EVB</scope></search><sort><creationdate>20191231</creationdate><title>Fetal ultrasound image recognition method and system based on deep learning</title><author>WANG NAN ; LIANG ZHE ; XIE HONGNING ; XIAN JIANBO ; MAO MINGCHUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110634125A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG NAN</creatorcontrib><creatorcontrib>LIANG ZHE</creatorcontrib><creatorcontrib>XIE HONGNING</creatorcontrib><creatorcontrib>XIAN JIANBO</creatorcontrib><creatorcontrib>MAO MINGCHUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG NAN</au><au>LIANG ZHE</au><au>XIE HONGNING</au><au>XIAN JIANBO</au><au>MAO MINGCHUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Fetal ultrasound image recognition method and system based on deep learning</title><date>2019-12-31</date><risdate>2019</risdate><abstract>The invention discloses a fetal ultrasonic image recognition method and system based on deep learning. The method comprises the steps that ultrasonic equipment detects and sends fetal ultrasonic parameter information to a data terminal according to a printing operation control instruction; the data terminal receives and sends the ultrasonic parameter information to a cloud server; the cloud serverreceives the ultrasonic static image and performs segmentation operation on the ultrasonic static image based on a predetermined image segmentation model to obtain segmented sub-images, and inputs the segmented sub-images into a predetermined image classification model to obtain a classification model result; the cloud server sends the classification model result to the main control device; and the main control equipment receives and outputs the classification model result. According to the invention, deep learning can be applied to examination of the fetal ultrasound image, so that the identification efficiency and</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110634125A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Fetal ultrasound image recognition method and system based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20NAN&rft.date=2019-12-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110634125A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true