Multi-target sorting model training method and device and user behavior prediction method and device

The invention provides a multi-target sorting model training method and device and a user behavior prediction method and device, and relates to the field of artificial intelligence. The method comprises the following steps: constructing an initial multi-target sorting model and a loss function; firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG RUI, FANG HANYIN, SHAN HOUZHI, SI QI, GAO JUNMIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG RUI
FANG HANYIN
SHAN HOUZHI
SI QI
GAO JUNMIN
description The invention provides a multi-target sorting model training method and device and a user behavior prediction method and device, and relates to the field of artificial intelligence. The method comprises the following steps: constructing an initial multi-target sorting model and a loss function; firstly, processing a training sample through the initial multi-target sorting model to obtain the clickestimation value and the multi-task estimation value, and then correcting the click estimation value, so that the deviation between the click estimation value and the actual click rate is reduced. The problems of inaccurate prediction and large prediction error when the multi-target sorting model obtained through training predicts the user behavior in actual application can be avoided. 本申请提供一种多目标排序模型训练、用户行为预测方法及装置,涉及人工智能领域。在构建初始多目标排序模型和损失函数之后,先通过初始多目标排序模型对训练样本进行处理,得到点击预估值和多任务预估值,然后再对点击预估值进行矫正处理,以减少点击预估值与实际点击率之间的偏差,能够避免训练得到的多目标排序模型在实际应用中预测用户行为时,出现预测不准确,预测误差大的问题。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110569427A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110569427A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110569427A3</originalsourceid><addsrcrecordid>eNqNir0KwkAQBq-xEPUd1gcIGH-xlKDYaGUfztxnsnDeHXubPL8Q7GysZgZmatyt98qFWmmhlKMoh5be0cGTiuUwJrSLjmxw5DBwg1H7DKEnOjtwFEoCx41yDL_73Exe1mcsvpyZ5eX8qK4FUqyRk20QoHV1L8vVbn_crg-nzT_PB--VPt4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Multi-target sorting model training method and device and user behavior prediction method and device</title><source>esp@cenet</source><creator>ZHANG RUI ; FANG HANYIN ; SHAN HOUZHI ; SI QI ; GAO JUNMIN</creator><creatorcontrib>ZHANG RUI ; FANG HANYIN ; SHAN HOUZHI ; SI QI ; GAO JUNMIN</creatorcontrib><description>The invention provides a multi-target sorting model training method and device and a user behavior prediction method and device, and relates to the field of artificial intelligence. The method comprises the following steps: constructing an initial multi-target sorting model and a loss function; firstly, processing a training sample through the initial multi-target sorting model to obtain the clickestimation value and the multi-task estimation value, and then correcting the click estimation value, so that the deviation between the click estimation value and the actual click rate is reduced. The problems of inaccurate prediction and large prediction error when the multi-target sorting model obtained through training predicts the user behavior in actual application can be avoided. 本申请提供一种多目标排序模型训练、用户行为预测方法及装置,涉及人工智能领域。在构建初始多目标排序模型和损失函数之后,先通过初始多目标排序模型对训练样本进行处理,得到点击预估值和多任务预估值,然后再对点击预估值进行矫正处理,以减少点击预估值与实际点击率之间的偏差,能够避免训练得到的多目标排序模型在实际应用中预测用户行为时,出现预测不准确,预测误差大的问题。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191213&amp;DB=EPODOC&amp;CC=CN&amp;NR=110569427A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191213&amp;DB=EPODOC&amp;CC=CN&amp;NR=110569427A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>FANG HANYIN</creatorcontrib><creatorcontrib>SHAN HOUZHI</creatorcontrib><creatorcontrib>SI QI</creatorcontrib><creatorcontrib>GAO JUNMIN</creatorcontrib><title>Multi-target sorting model training method and device and user behavior prediction method and device</title><description>The invention provides a multi-target sorting model training method and device and a user behavior prediction method and device, and relates to the field of artificial intelligence. The method comprises the following steps: constructing an initial multi-target sorting model and a loss function; firstly, processing a training sample through the initial multi-target sorting model to obtain the clickestimation value and the multi-task estimation value, and then correcting the click estimation value, so that the deviation between the click estimation value and the actual click rate is reduced. The problems of inaccurate prediction and large prediction error when the multi-target sorting model obtained through training predicts the user behavior in actual application can be avoided. 本申请提供一种多目标排序模型训练、用户行为预测方法及装置,涉及人工智能领域。在构建初始多目标排序模型和损失函数之后,先通过初始多目标排序模型对训练样本进行处理,得到点击预估值和多任务预估值,然后再对点击预估值进行矫正处理,以减少点击预估值与实际点击率之间的偏差,能够避免训练得到的多目标排序模型在实际应用中预测用户行为时,出现预测不准确,预测误差大的问题。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNir0KwkAQBq-xEPUd1gcIGH-xlKDYaGUfztxnsnDeHXubPL8Q7GysZgZmatyt98qFWmmhlKMoh5be0cGTiuUwJrSLjmxw5DBwg1H7DKEnOjtwFEoCx41yDL_73Exe1mcsvpyZ5eX8qK4FUqyRk20QoHV1L8vVbn_crg-nzT_PB--VPt4</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>ZHANG RUI</creator><creator>FANG HANYIN</creator><creator>SHAN HOUZHI</creator><creator>SI QI</creator><creator>GAO JUNMIN</creator><scope>EVB</scope></search><sort><creationdate>20191213</creationdate><title>Multi-target sorting model training method and device and user behavior prediction method and device</title><author>ZHANG RUI ; FANG HANYIN ; SHAN HOUZHI ; SI QI ; GAO JUNMIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110569427A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>FANG HANYIN</creatorcontrib><creatorcontrib>SHAN HOUZHI</creatorcontrib><creatorcontrib>SI QI</creatorcontrib><creatorcontrib>GAO JUNMIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RUI</au><au>FANG HANYIN</au><au>SHAN HOUZHI</au><au>SI QI</au><au>GAO JUNMIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Multi-target sorting model training method and device and user behavior prediction method and device</title><date>2019-12-13</date><risdate>2019</risdate><abstract>The invention provides a multi-target sorting model training method and device and a user behavior prediction method and device, and relates to the field of artificial intelligence. The method comprises the following steps: constructing an initial multi-target sorting model and a loss function; firstly, processing a training sample through the initial multi-target sorting model to obtain the clickestimation value and the multi-task estimation value, and then correcting the click estimation value, so that the deviation between the click estimation value and the actual click rate is reduced. The problems of inaccurate prediction and large prediction error when the multi-target sorting model obtained through training predicts the user behavior in actual application can be avoided. 本申请提供一种多目标排序模型训练、用户行为预测方法及装置,涉及人工智能领域。在构建初始多目标排序模型和损失函数之后,先通过初始多目标排序模型对训练样本进行处理,得到点击预估值和多任务预估值,然后再对点击预估值进行矫正处理,以减少点击预估值与实际点击率之间的偏差,能够避免训练得到的多目标排序模型在实际应用中预测用户行为时,出现预测不准确,预测误差大的问题。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110569427A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Multi-target sorting model training method and device and user behavior prediction method and device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RUI&rft.date=2019-12-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110569427A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true