Crystalline lens turbidity degree detection method based on convolutional neural network

The invention discloses a crystalline lens turbidity detection method based on a convolutional neural network. The method comprises the following steps: (1) preprocessing a to-be-detected image by adopting an illumination enhancement method to form preprocessed image data; and (2) substituting the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU ZHENYU, SONG JIANCONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU ZHENYU
SONG JIANCONG
description The invention discloses a crystalline lens turbidity detection method based on a convolutional neural network. The method comprises the following steps: (1) preprocessing a to-be-detected image by adopting an illumination enhancement method to form preprocessed image data; and (2) substituting the preprocessed image data in the step (1) into a crystalline lens turbidity detection learning model torealize detection. According to the invention, the Inception-V3 model and parameters which are pre-trained by the ImageNet are utilized. The training is carried out by adopting the thought of transfer learning to obtain the classification model. After the system is completed, crystalline lens turbidity research and comparison can be carried out in real time through a mobile phone APP. 基于卷积神经网络的晶状体浑浊程度检测方法,该方法步骤如下:(1)、对待测图像采用光照增强法进行预处理形成预处理图像数据;(2)、将(1)步骤中的预处理图像数据代入晶状体浑浊程度检测学习模型实现检测,本发明利用ImageNet预训练过的Inception-V3模型及参数,并采用迁移学习的思想进行训练从而得到分类模型,该系统完成后可实现通过手机APP实时进行晶状体浑浊研究对比。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110516685A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110516685A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110516685A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAUheEuDqK-w_UBBIO0uEpQnJwc3EqaHG0wJiW5Ufr2RvEBnD4O559WFxnHxMo560EOPhHn2FljeSSDWwQKDM02eHqA-2CoUwmGytbBP4PLn0858sjxC79CvM-ryVW5hMXPWbU87M_yuMIQWqRBaZSylSch1rVomm292_zTvAEdUTtD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Crystalline lens turbidity degree detection method based on convolutional neural network</title><source>esp@cenet</source><creator>LIU ZHENYU ; SONG JIANCONG</creator><creatorcontrib>LIU ZHENYU ; SONG JIANCONG</creatorcontrib><description>The invention discloses a crystalline lens turbidity detection method based on a convolutional neural network. The method comprises the following steps: (1) preprocessing a to-be-detected image by adopting an illumination enhancement method to form preprocessed image data; and (2) substituting the preprocessed image data in the step (1) into a crystalline lens turbidity detection learning model torealize detection. According to the invention, the Inception-V3 model and parameters which are pre-trained by the ImageNet are utilized. The training is carried out by adopting the thought of transfer learning to obtain the classification model. After the system is completed, crystalline lens turbidity research and comparison can be carried out in real time through a mobile phone APP. 基于卷积神经网络的晶状体浑浊程度检测方法,该方法步骤如下:(1)、对待测图像采用光照增强法进行预处理形成预处理图像数据;(2)、将(1)步骤中的预处理图像数据代入晶状体浑浊程度检测学习模型实现检测,本发明利用ImageNet预训练过的Inception-V3模型及参数,并采用迁移学习的思想进行训练从而得到分类模型,该系统完成后可实现通过手机APP实时进行晶状体浑浊研究对比。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191129&amp;DB=EPODOC&amp;CC=CN&amp;NR=110516685A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25562,76317</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191129&amp;DB=EPODOC&amp;CC=CN&amp;NR=110516685A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU ZHENYU</creatorcontrib><creatorcontrib>SONG JIANCONG</creatorcontrib><title>Crystalline lens turbidity degree detection method based on convolutional neural network</title><description>The invention discloses a crystalline lens turbidity detection method based on a convolutional neural network. The method comprises the following steps: (1) preprocessing a to-be-detected image by adopting an illumination enhancement method to form preprocessed image data; and (2) substituting the preprocessed image data in the step (1) into a crystalline lens turbidity detection learning model torealize detection. According to the invention, the Inception-V3 model and parameters which are pre-trained by the ImageNet are utilized. The training is carried out by adopting the thought of transfer learning to obtain the classification model. After the system is completed, crystalline lens turbidity research and comparison can be carried out in real time through a mobile phone APP. 基于卷积神经网络的晶状体浑浊程度检测方法,该方法步骤如下:(1)、对待测图像采用光照增强法进行预处理形成预处理图像数据;(2)、将(1)步骤中的预处理图像数据代入晶状体浑浊程度检测学习模型实现检测,本发明利用ImageNet预训练过的Inception-V3模型及参数,并采用迁移学习的思想进行训练从而得到分类模型,该系统完成后可实现通过手机APP实时进行晶状体浑浊研究对比。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAUheEuDqK-w_UBBIO0uEpQnJwc3EqaHG0wJiW5Ufr2RvEBnD4O559WFxnHxMo560EOPhHn2FljeSSDWwQKDM02eHqA-2CoUwmGytbBP4PLn0858sjxC79CvM-ryVW5hMXPWbU87M_yuMIQWqRBaZSylSch1rVomm292_zTvAEdUTtD</recordid><startdate>20191129</startdate><enddate>20191129</enddate><creator>LIU ZHENYU</creator><creator>SONG JIANCONG</creator><scope>EVB</scope></search><sort><creationdate>20191129</creationdate><title>Crystalline lens turbidity degree detection method based on convolutional neural network</title><author>LIU ZHENYU ; SONG JIANCONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110516685A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU ZHENYU</creatorcontrib><creatorcontrib>SONG JIANCONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU ZHENYU</au><au>SONG JIANCONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Crystalline lens turbidity degree detection method based on convolutional neural network</title><date>2019-11-29</date><risdate>2019</risdate><abstract>The invention discloses a crystalline lens turbidity detection method based on a convolutional neural network. The method comprises the following steps: (1) preprocessing a to-be-detected image by adopting an illumination enhancement method to form preprocessed image data; and (2) substituting the preprocessed image data in the step (1) into a crystalline lens turbidity detection learning model torealize detection. According to the invention, the Inception-V3 model and parameters which are pre-trained by the ImageNet are utilized. The training is carried out by adopting the thought of transfer learning to obtain the classification model. After the system is completed, crystalline lens turbidity research and comparison can be carried out in real time through a mobile phone APP. 基于卷积神经网络的晶状体浑浊程度检测方法,该方法步骤如下:(1)、对待测图像采用光照增强法进行预处理形成预处理图像数据;(2)、将(1)步骤中的预处理图像数据代入晶状体浑浊程度检测学习模型实现检测,本发明利用ImageNet预训练过的Inception-V3模型及参数,并采用迁移学习的思想进行训练从而得到分类模型,该系统完成后可实现通过手机APP实时进行晶状体浑浊研究对比。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110516685A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Crystalline lens turbidity degree detection method based on convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20ZHENYU&rft.date=2019-11-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110516685A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true