Isolated forest underwater artificial target detection method based on genetic algorithm

The invention discloses an isolated forest underwater artificial target detection method based on a genetic algorithm. The method comprises: firstly, reading an original sonar image file collected byan underwater robot; secondly, normalizing the original sonar image data and filling missing values;...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAI LEI, TIAN YUQUAN, XIAO ZHAOLIN, JIN HAIYAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAI LEI
TIAN YUQUAN
XIAO ZHAOLIN
JIN HAIYAN
description The invention discloses an isolated forest underwater artificial target detection method based on a genetic algorithm. The method comprises: firstly, reading an original sonar image file collected byan underwater robot; secondly, normalizing the original sonar image data and filling missing values; then, defining a population size and iteration times, initializing each individual of the population in the genetic algorithm, extracting sample data, and calculating abnormal data points and normal data points in the image data by establishing a separation tree and an isolated forest; and finally,performing training iteration through a population in the genetic algorithm, and if the number of iterations reaches a specified number of iterations, outputting an optimal solution; and if not, returning to continue the steps. According to the method disclosed by the invention, self-adaptive parameter setting is provided, so that precision loss caused by manual setting is avoided, and compared with an original isolated f
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110503629A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110503629A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110503629A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQRbtxIeodxgMIrUXBpRRFN65cuCtjMkkH0kxJRry-ETyAq8d__DevHtcsAZUsOEmUFV7RUnoXkwCTsmPDGEAxeVKwpGSUJcJIOoiFJ-aSlu0pkrIBDF4S6zAuq5nDkGn146Jan0_37rKhSXrKE5pv0Xe3pql3dbvfHo7tP58P-bc63w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Isolated forest underwater artificial target detection method based on genetic algorithm</title><source>esp@cenet</source><creator>CAI LEI ; TIAN YUQUAN ; XIAO ZHAOLIN ; JIN HAIYAN</creator><creatorcontrib>CAI LEI ; TIAN YUQUAN ; XIAO ZHAOLIN ; JIN HAIYAN</creatorcontrib><description>The invention discloses an isolated forest underwater artificial target detection method based on a genetic algorithm. The method comprises: firstly, reading an original sonar image file collected byan underwater robot; secondly, normalizing the original sonar image data and filling missing values; then, defining a population size and iteration times, initializing each individual of the population in the genetic algorithm, extracting sample data, and calculating abnormal data points and normal data points in the image data by establishing a separation tree and an isolated forest; and finally,performing training iteration through a population in the genetic algorithm, and if the number of iterations reaches a specified number of iterations, outputting an optimal solution; and if not, returning to continue the steps. According to the method disclosed by the invention, self-adaptive parameter setting is provided, so that precision loss caused by manual setting is avoided, and compared with an original isolated f</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191126&amp;DB=EPODOC&amp;CC=CN&amp;NR=110503629A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191126&amp;DB=EPODOC&amp;CC=CN&amp;NR=110503629A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAI LEI</creatorcontrib><creatorcontrib>TIAN YUQUAN</creatorcontrib><creatorcontrib>XIAO ZHAOLIN</creatorcontrib><creatorcontrib>JIN HAIYAN</creatorcontrib><title>Isolated forest underwater artificial target detection method based on genetic algorithm</title><description>The invention discloses an isolated forest underwater artificial target detection method based on a genetic algorithm. The method comprises: firstly, reading an original sonar image file collected byan underwater robot; secondly, normalizing the original sonar image data and filling missing values; then, defining a population size and iteration times, initializing each individual of the population in the genetic algorithm, extracting sample data, and calculating abnormal data points and normal data points in the image data by establishing a separation tree and an isolated forest; and finally,performing training iteration through a population in the genetic algorithm, and if the number of iterations reaches a specified number of iterations, outputting an optimal solution; and if not, returning to continue the steps. According to the method disclosed by the invention, self-adaptive parameter setting is provided, so that precision loss caused by manual setting is avoided, and compared with an original isolated f</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQRbtxIeodxgMIrUXBpRRFN65cuCtjMkkH0kxJRry-ETyAq8d__DevHtcsAZUsOEmUFV7RUnoXkwCTsmPDGEAxeVKwpGSUJcJIOoiFJ-aSlu0pkrIBDF4S6zAuq5nDkGn146Jan0_37rKhSXrKE5pv0Xe3pql3dbvfHo7tP58P-bc63w</recordid><startdate>20191126</startdate><enddate>20191126</enddate><creator>CAI LEI</creator><creator>TIAN YUQUAN</creator><creator>XIAO ZHAOLIN</creator><creator>JIN HAIYAN</creator><scope>EVB</scope></search><sort><creationdate>20191126</creationdate><title>Isolated forest underwater artificial target detection method based on genetic algorithm</title><author>CAI LEI ; TIAN YUQUAN ; XIAO ZHAOLIN ; JIN HAIYAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110503629A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAI LEI</creatorcontrib><creatorcontrib>TIAN YUQUAN</creatorcontrib><creatorcontrib>XIAO ZHAOLIN</creatorcontrib><creatorcontrib>JIN HAIYAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAI LEI</au><au>TIAN YUQUAN</au><au>XIAO ZHAOLIN</au><au>JIN HAIYAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Isolated forest underwater artificial target detection method based on genetic algorithm</title><date>2019-11-26</date><risdate>2019</risdate><abstract>The invention discloses an isolated forest underwater artificial target detection method based on a genetic algorithm. The method comprises: firstly, reading an original sonar image file collected byan underwater robot; secondly, normalizing the original sonar image data and filling missing values; then, defining a population size and iteration times, initializing each individual of the population in the genetic algorithm, extracting sample data, and calculating abnormal data points and normal data points in the image data by establishing a separation tree and an isolated forest; and finally,performing training iteration through a population in the genetic algorithm, and if the number of iterations reaches a specified number of iterations, outputting an optimal solution; and if not, returning to continue the steps. According to the method disclosed by the invention, self-adaptive parameter setting is provided, so that precision loss caused by manual setting is avoided, and compared with an original isolated f</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110503629A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Isolated forest underwater artificial target detection method based on genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A35%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAI%20LEI&rft.date=2019-11-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110503629A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true