Netflow data dimension reduction method with supervised discriminant manifold learning

The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN SIJIA, ZHAO TIANYU, WANG XINYUE, HE DI, FENG GUANGSHENG, WANG RUINI, LYU HONGWU, GUO FANGFANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN SIJIA
ZHAO TIANYU
WANG XINYUE
HE DI
FENG GUANGSHENG
WANG RUINI
LYU HONGWU
GUO FANGFANG
description The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110490231A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110490231A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110490231A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w_kAQmNdHEtRnDqJazmSqz1ILiG52tdXwQdw-v_hW1ePnnT0cQGHiuA4kBSOApncbPV7gXSKDhbWCcqcKL-4kPvQYjMHFhSFgMJj9A48YRaW57ZajegL7X7dVPvr5d7dDpTiQCWhJSEdut6Y-nSuj41pm3_MG5dmOnk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><source>esp@cenet</source><creator>SUN SIJIA ; ZHAO TIANYU ; WANG XINYUE ; HE DI ; FENG GUANGSHENG ; WANG RUINI ; LYU HONGWU ; GUO FANGFANG</creator><creatorcontrib>SUN SIJIA ; ZHAO TIANYU ; WANG XINYUE ; HE DI ; FENG GUANGSHENG ; WANG RUINI ; LYU HONGWU ; GUO FANGFANG</creatorcontrib><description>The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191122&amp;DB=EPODOC&amp;CC=CN&amp;NR=110490231A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191122&amp;DB=EPODOC&amp;CC=CN&amp;NR=110490231A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN SIJIA</creatorcontrib><creatorcontrib>ZHAO TIANYU</creatorcontrib><creatorcontrib>WANG XINYUE</creatorcontrib><creatorcontrib>HE DI</creatorcontrib><creatorcontrib>FENG GUANGSHENG</creatorcontrib><creatorcontrib>WANG RUINI</creatorcontrib><creatorcontrib>LYU HONGWU</creatorcontrib><creatorcontrib>GUO FANGFANG</creatorcontrib><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><description>The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w_kAQmNdHEtRnDqJazmSqz1ILiG52tdXwQdw-v_hW1ePnnT0cQGHiuA4kBSOApncbPV7gXSKDhbWCcqcKL-4kPvQYjMHFhSFgMJj9A48YRaW57ZajegL7X7dVPvr5d7dDpTiQCWhJSEdut6Y-nSuj41pm3_MG5dmOnk</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>SUN SIJIA</creator><creator>ZHAO TIANYU</creator><creator>WANG XINYUE</creator><creator>HE DI</creator><creator>FENG GUANGSHENG</creator><creator>WANG RUINI</creator><creator>LYU HONGWU</creator><creator>GUO FANGFANG</creator><scope>EVB</scope></search><sort><creationdate>20191122</creationdate><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><author>SUN SIJIA ; ZHAO TIANYU ; WANG XINYUE ; HE DI ; FENG GUANGSHENG ; WANG RUINI ; LYU HONGWU ; GUO FANGFANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110490231A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN SIJIA</creatorcontrib><creatorcontrib>ZHAO TIANYU</creatorcontrib><creatorcontrib>WANG XINYUE</creatorcontrib><creatorcontrib>HE DI</creatorcontrib><creatorcontrib>FENG GUANGSHENG</creatorcontrib><creatorcontrib>WANG RUINI</creatorcontrib><creatorcontrib>LYU HONGWU</creatorcontrib><creatorcontrib>GUO FANGFANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN SIJIA</au><au>ZHAO TIANYU</au><au>WANG XINYUE</au><au>HE DI</au><au>FENG GUANGSHENG</au><au>WANG RUINI</au><au>LYU HONGWU</au><au>GUO FANGFANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><date>2019-11-22</date><risdate>2019</risdate><abstract>The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110490231A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Netflow data dimension reduction method with supervised discriminant manifold learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20SIJIA&rft.date=2019-11-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110490231A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true