Netflow data dimension reduction method with supervised discriminant manifold learning
The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | SUN SIJIA ZHAO TIANYU WANG XINYUE HE DI FENG GUANGSHENG WANG RUINI LYU HONGWU GUO FANGFANG |
description | The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110490231A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110490231A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110490231A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w_kAQmNdHEtRnDqJazmSqz1ILiG52tdXwQdw-v_hW1ePnnT0cQGHiuA4kBSOApncbPV7gXSKDhbWCcqcKL-4kPvQYjMHFhSFgMJj9A48YRaW57ZajegL7X7dVPvr5d7dDpTiQCWhJSEdut6Y-nSuj41pm3_MG5dmOnk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><source>esp@cenet</source><creator>SUN SIJIA ; ZHAO TIANYU ; WANG XINYUE ; HE DI ; FENG GUANGSHENG ; WANG RUINI ; LYU HONGWU ; GUO FANGFANG</creator><creatorcontrib>SUN SIJIA ; ZHAO TIANYU ; WANG XINYUE ; HE DI ; FENG GUANGSHENG ; WANG RUINI ; LYU HONGWU ; GUO FANGFANG</creatorcontrib><description>The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191122&DB=EPODOC&CC=CN&NR=110490231A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191122&DB=EPODOC&CC=CN&NR=110490231A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN SIJIA</creatorcontrib><creatorcontrib>ZHAO TIANYU</creatorcontrib><creatorcontrib>WANG XINYUE</creatorcontrib><creatorcontrib>HE DI</creatorcontrib><creatorcontrib>FENG GUANGSHENG</creatorcontrib><creatorcontrib>WANG RUINI</creatorcontrib><creatorcontrib>LYU HONGWU</creatorcontrib><creatorcontrib>GUO FANGFANG</creatorcontrib><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><description>The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w_kAQmNdHEtRnDqJazmSqz1ILiG52tdXwQdw-v_hW1ePnnT0cQGHiuA4kBSOApncbPV7gXSKDhbWCcqcKL-4kPvQYjMHFhSFgMJj9A48YRaW57ZajegL7X7dVPvr5d7dDpTiQCWhJSEdut6Y-nSuj41pm3_MG5dmOnk</recordid><startdate>20191122</startdate><enddate>20191122</enddate><creator>SUN SIJIA</creator><creator>ZHAO TIANYU</creator><creator>WANG XINYUE</creator><creator>HE DI</creator><creator>FENG GUANGSHENG</creator><creator>WANG RUINI</creator><creator>LYU HONGWU</creator><creator>GUO FANGFANG</creator><scope>EVB</scope></search><sort><creationdate>20191122</creationdate><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><author>SUN SIJIA ; ZHAO TIANYU ; WANG XINYUE ; HE DI ; FENG GUANGSHENG ; WANG RUINI ; LYU HONGWU ; GUO FANGFANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110490231A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN SIJIA</creatorcontrib><creatorcontrib>ZHAO TIANYU</creatorcontrib><creatorcontrib>WANG XINYUE</creatorcontrib><creatorcontrib>HE DI</creatorcontrib><creatorcontrib>FENG GUANGSHENG</creatorcontrib><creatorcontrib>WANG RUINI</creatorcontrib><creatorcontrib>LYU HONGWU</creatorcontrib><creatorcontrib>GUO FANGFANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN SIJIA</au><au>ZHAO TIANYU</au><au>WANG XINYUE</au><au>HE DI</au><au>FENG GUANGSHENG</au><au>WANG RUINI</au><au>LYU HONGWU</au><au>GUO FANGFANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Netflow data dimension reduction method with supervised discriminant manifold learning</title><date>2019-11-22</date><risdate>2019</risdate><abstract>The invention belongs to the field of data processing, and discloses a Netflow data dimension reduction method with supervised discriminant manifold learning. The method comprises the following stepsof: (1) obtaining a Netflow data packet from a local area network router and storing the Netflow data packet into a database; step (2) establishing a Netflow data matrix X = [y1, y2,..., yn]; (3) establishing a neighbor matrix Hij, and constructing a supervised discrimination matrix Sij in combination with the neighbor relationship of the neighbor matrix Hij; (4) calculating a local divergence matrix SL and a global divergence matrix SN; establishing a constraint objective function model J (A), and searching a low-dimensional projection subspace with a maximum global divergence matrix and a minimum local divergence matrix at the same time by utilizing the constraint objective function model J (A); and (5) feature decomposition: according to the constraint objective function model J (A), solving a solution of a con</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110490231A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Netflow data dimension reduction method with supervised discriminant manifold learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN%20SIJIA&rft.date=2019-11-22&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110490231A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |