Adaptive unscented Kalman particle filtering method

The invention discloses an adaptive unscented Kalman particle filtering method. The method utilizes the theory of the Sage filtering windowing method, also combines the idea of fading, estimates a true covariance matrix of the observed quantity by collecting an epoch innovation vector, and compares...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WEN ZHEJUN, CHEN SHUAI, WANG CHEN, TAN JUHAO, GU DEYOU, LIU SHANWU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WEN ZHEJUN
CHEN SHUAI
WANG CHEN
TAN JUHAO
GU DEYOU
LIU SHANWU
description The invention discloses an adaptive unscented Kalman particle filtering method. The method utilizes the theory of the Sage filtering windowing method, also combines the idea of fading, estimates a true covariance matrix of the observed quantity by collecting an epoch innovation vector, and compares the true covariance matrix with the covariance matrix of a filtering recursive model, when a deviation exists between the two covariances, the observed covariance matrix of the system is adaptively adjusted according to the difference. Based on the process, an adaptive fading factor is designed, theobservation noise is further modified, the modified observation noise participates in the solution of a gain matrix, and thus the state estimation can be adaptively adjusted. The scheme of the invention can effectively perform filtering correction on a strongly nonlinear satellite/inertial integrated navigation system, especially when the external noise is abnormal, the filtering gain can be effectively and adaptively ad
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110455287A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110455287A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110455287A3</originalsourceid><addsrcrecordid>eNrjZDB2TEksKMksS1UozStOTs0rSU1R8E7MyU3MUyhILCrJTM5JVUjLzClJLcrMS1fITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJQHNSS-Kd_QwNDUxMTY0szB2NiVEDABKQLKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Adaptive unscented Kalman particle filtering method</title><source>esp@cenet</source><creator>WEN ZHEJUN ; CHEN SHUAI ; WANG CHEN ; TAN JUHAO ; GU DEYOU ; LIU SHANWU</creator><creatorcontrib>WEN ZHEJUN ; CHEN SHUAI ; WANG CHEN ; TAN JUHAO ; GU DEYOU ; LIU SHANWU</creatorcontrib><description>The invention discloses an adaptive unscented Kalman particle filtering method. The method utilizes the theory of the Sage filtering windowing method, also combines the idea of fading, estimates a true covariance matrix of the observed quantity by collecting an epoch innovation vector, and compares the true covariance matrix with the covariance matrix of a filtering recursive model, when a deviation exists between the two covariances, the observed covariance matrix of the system is adaptively adjusted according to the difference. Based on the process, an adaptive fading factor is designed, theobservation noise is further modified, the modified observation noise participates in the solution of a gain matrix, and thus the state estimation can be adaptively adjusted. The scheme of the invention can effectively perform filtering correction on a strongly nonlinear satellite/inertial integrated navigation system, especially when the external noise is abnormal, the filtering gain can be effectively and adaptively ad</description><language>chi ; eng</language><subject>GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191115&amp;DB=EPODOC&amp;CC=CN&amp;NR=110455287A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191115&amp;DB=EPODOC&amp;CC=CN&amp;NR=110455287A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WEN ZHEJUN</creatorcontrib><creatorcontrib>CHEN SHUAI</creatorcontrib><creatorcontrib>WANG CHEN</creatorcontrib><creatorcontrib>TAN JUHAO</creatorcontrib><creatorcontrib>GU DEYOU</creatorcontrib><creatorcontrib>LIU SHANWU</creatorcontrib><title>Adaptive unscented Kalman particle filtering method</title><description>The invention discloses an adaptive unscented Kalman particle filtering method. The method utilizes the theory of the Sage filtering windowing method, also combines the idea of fading, estimates a true covariance matrix of the observed quantity by collecting an epoch innovation vector, and compares the true covariance matrix with the covariance matrix of a filtering recursive model, when a deviation exists between the two covariances, the observed covariance matrix of the system is adaptively adjusted according to the difference. Based on the process, an adaptive fading factor is designed, theobservation noise is further modified, the modified observation noise participates in the solution of a gain matrix, and thus the state estimation can be adaptively adjusted. The scheme of the invention can effectively perform filtering correction on a strongly nonlinear satellite/inertial integrated navigation system, especially when the external noise is abnormal, the filtering gain can be effectively and adaptively ad</description><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB2TEksKMksS1UozStOTs0rSU1R8E7MyU3MUyhILCrJTM5JVUjLzClJLcrMS1fITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJQHNSS-Kd_QwNDUxMTY0szB2NiVEDABKQLKA</recordid><startdate>20191115</startdate><enddate>20191115</enddate><creator>WEN ZHEJUN</creator><creator>CHEN SHUAI</creator><creator>WANG CHEN</creator><creator>TAN JUHAO</creator><creator>GU DEYOU</creator><creator>LIU SHANWU</creator><scope>EVB</scope></search><sort><creationdate>20191115</creationdate><title>Adaptive unscented Kalman particle filtering method</title><author>WEN ZHEJUN ; CHEN SHUAI ; WANG CHEN ; TAN JUHAO ; GU DEYOU ; LIU SHANWU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110455287A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WEN ZHEJUN</creatorcontrib><creatorcontrib>CHEN SHUAI</creatorcontrib><creatorcontrib>WANG CHEN</creatorcontrib><creatorcontrib>TAN JUHAO</creatorcontrib><creatorcontrib>GU DEYOU</creatorcontrib><creatorcontrib>LIU SHANWU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WEN ZHEJUN</au><au>CHEN SHUAI</au><au>WANG CHEN</au><au>TAN JUHAO</au><au>GU DEYOU</au><au>LIU SHANWU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Adaptive unscented Kalman particle filtering method</title><date>2019-11-15</date><risdate>2019</risdate><abstract>The invention discloses an adaptive unscented Kalman particle filtering method. The method utilizes the theory of the Sage filtering windowing method, also combines the idea of fading, estimates a true covariance matrix of the observed quantity by collecting an epoch innovation vector, and compares the true covariance matrix with the covariance matrix of a filtering recursive model, when a deviation exists between the two covariances, the observed covariance matrix of the system is adaptively adjusted according to the difference. Based on the process, an adaptive fading factor is designed, theobservation noise is further modified, the modified observation noise participates in the solution of a gain matrix, and thus the state estimation can be adaptively adjusted. The scheme of the invention can effectively perform filtering correction on a strongly nonlinear satellite/inertial integrated navigation system, especially when the external noise is abnormal, the filtering gain can be effectively and adaptively ad</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110455287A
source esp@cenet
subjects GYROSCOPIC INSTRUMENTS
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
SURVEYING
TESTING
title Adaptive unscented Kalman particle filtering method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A33%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WEN%20ZHEJUN&rft.date=2019-11-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110455287A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true