Underground shallow seismic source positioning method based on deep learning

The invention relates to an underground shallow seismic source positioning method based on deep learning. The underground shallow seismic source positioning method comprises the following steps: arranging a distributed vibration sensor array, generating a learning sample, setting a seismic source bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG XIAOLIANG, LI JIAN, HAN YAN, WANG YANBO, LI MAOJIN, SU XINYAN, MO BIMING, LI YUJIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG XIAOLIANG
LI JIAN
HAN YAN
WANG YANBO
LI MAOJIN
SU XINYAN
MO BIMING
LI YUJIAN
description The invention relates to an underground shallow seismic source positioning method based on deep learning. The underground shallow seismic source positioning method comprises the following steps: arranging a distributed vibration sensor array, generating a learning sample, setting a seismic source bullet position corresponding to a three-dimensional energy field image sample as a training label, constructing a deep learning network framework, training a network, and positioning an actual explosion seismic source. According to the invention, the intermediate steps of positioning parameter extraction, positioning model modeling, positioning model calculation and the like in a traditional shallow seismic source positioning process are reduced. The method greatly improves the seismic source positioning efficiency, eliminates the positioning blind area, reduces the dependence of the channel reconstruction precision of a monitoring region on the seismic source positioning precision, and provides a new seismic source
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110414675A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110414675A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110414675A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQRuFsXIh6h_EAgsGqaymKC3Gl6xKbv20gnQmZFK8vggdw9Rbfm5vbkz1yn2ViTzq4GOVNiqBjaEllyi0oiYYShAP3NKIM4unlFJ6EyQOJIlz-6tLMOhcVq18XZn05P-rrBkkaaHItGKWp79ZuK1sdjvvT7p_nA--HNlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Underground shallow seismic source positioning method based on deep learning</title><source>esp@cenet</source><creator>WANG XIAOLIANG ; LI JIAN ; HAN YAN ; WANG YANBO ; LI MAOJIN ; SU XINYAN ; MO BIMING ; LI YUJIAN</creator><creatorcontrib>WANG XIAOLIANG ; LI JIAN ; HAN YAN ; WANG YANBO ; LI MAOJIN ; SU XINYAN ; MO BIMING ; LI YUJIAN</creatorcontrib><description>The invention relates to an underground shallow seismic source positioning method based on deep learning. The underground shallow seismic source positioning method comprises the following steps: arranging a distributed vibration sensor array, generating a learning sample, setting a seismic source bullet position corresponding to a three-dimensional energy field image sample as a training label, constructing a deep learning network framework, training a network, and positioning an actual explosion seismic source. According to the invention, the intermediate steps of positioning parameter extraction, positioning model modeling, positioning model calculation and the like in a traditional shallow seismic source positioning process are reduced. The method greatly improves the seismic source positioning efficiency, eliminates the positioning blind area, reduces the dependence of the channel reconstruction precision of a monitoring region on the seismic source positioning precision, and provides a new seismic source</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191105&amp;DB=EPODOC&amp;CC=CN&amp;NR=110414675A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191105&amp;DB=EPODOC&amp;CC=CN&amp;NR=110414675A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG XIAOLIANG</creatorcontrib><creatorcontrib>LI JIAN</creatorcontrib><creatorcontrib>HAN YAN</creatorcontrib><creatorcontrib>WANG YANBO</creatorcontrib><creatorcontrib>LI MAOJIN</creatorcontrib><creatorcontrib>SU XINYAN</creatorcontrib><creatorcontrib>MO BIMING</creatorcontrib><creatorcontrib>LI YUJIAN</creatorcontrib><title>Underground shallow seismic source positioning method based on deep learning</title><description>The invention relates to an underground shallow seismic source positioning method based on deep learning. The underground shallow seismic source positioning method comprises the following steps: arranging a distributed vibration sensor array, generating a learning sample, setting a seismic source bullet position corresponding to a three-dimensional energy field image sample as a training label, constructing a deep learning network framework, training a network, and positioning an actual explosion seismic source. According to the invention, the intermediate steps of positioning parameter extraction, positioning model modeling, positioning model calculation and the like in a traditional shallow seismic source positioning process are reduced. The method greatly improves the seismic source positioning efficiency, eliminates the positioning blind area, reduces the dependence of the channel reconstruction precision of a monitoring region on the seismic source positioning precision, and provides a new seismic source</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQRuFsXIh6h_EAgsGqaymKC3Gl6xKbv20gnQmZFK8vggdw9Rbfm5vbkz1yn2ViTzq4GOVNiqBjaEllyi0oiYYShAP3NKIM4unlFJ6EyQOJIlz-6tLMOhcVq18XZn05P-rrBkkaaHItGKWp79ZuK1sdjvvT7p_nA--HNlA</recordid><startdate>20191105</startdate><enddate>20191105</enddate><creator>WANG XIAOLIANG</creator><creator>LI JIAN</creator><creator>HAN YAN</creator><creator>WANG YANBO</creator><creator>LI MAOJIN</creator><creator>SU XINYAN</creator><creator>MO BIMING</creator><creator>LI YUJIAN</creator><scope>EVB</scope></search><sort><creationdate>20191105</creationdate><title>Underground shallow seismic source positioning method based on deep learning</title><author>WANG XIAOLIANG ; LI JIAN ; HAN YAN ; WANG YANBO ; LI MAOJIN ; SU XINYAN ; MO BIMING ; LI YUJIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110414675A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG XIAOLIANG</creatorcontrib><creatorcontrib>LI JIAN</creatorcontrib><creatorcontrib>HAN YAN</creatorcontrib><creatorcontrib>WANG YANBO</creatorcontrib><creatorcontrib>LI MAOJIN</creatorcontrib><creatorcontrib>SU XINYAN</creatorcontrib><creatorcontrib>MO BIMING</creatorcontrib><creatorcontrib>LI YUJIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG XIAOLIANG</au><au>LI JIAN</au><au>HAN YAN</au><au>WANG YANBO</au><au>LI MAOJIN</au><au>SU XINYAN</au><au>MO BIMING</au><au>LI YUJIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Underground shallow seismic source positioning method based on deep learning</title><date>2019-11-05</date><risdate>2019</risdate><abstract>The invention relates to an underground shallow seismic source positioning method based on deep learning. The underground shallow seismic source positioning method comprises the following steps: arranging a distributed vibration sensor array, generating a learning sample, setting a seismic source bullet position corresponding to a three-dimensional energy field image sample as a training label, constructing a deep learning network framework, training a network, and positioning an actual explosion seismic source. According to the invention, the intermediate steps of positioning parameter extraction, positioning model modeling, positioning model calculation and the like in a traditional shallow seismic source positioning process are reduced. The method greatly improves the seismic source positioning efficiency, eliminates the positioning blind area, reduces the dependence of the channel reconstruction precision of a monitoring region on the seismic source positioning precision, and provides a new seismic source</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110414675A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
MEASURING
PHYSICS
TESTING
title Underground shallow seismic source positioning method based on deep learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20XIAOLIANG&rft.date=2019-11-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110414675A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true