Traffic flow prediction method fusing spatial and temporal features
The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial featur...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG PING XU WANRONG SHAN YUANHE YUAN WUBEI JIN YINLI WEI XU YANG JINGWEN |
description | The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate.
一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110378531A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110378531A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110378531A3</originalsourceid><addsrcrecordid>eNrjZHAOKUpMS8tMVkjLyS9XKChKTclMLsnMz1PITS3JyE9RSCstzsxLVyguSCzJTMxRSMxLUShJzS3ILwJy0lITS0qLUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnwqUGtyal5qSbyzn6GhgbG5hamxoaMxMWoAntMyvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Traffic flow prediction method fusing spatial and temporal features</title><source>esp@cenet</source><creator>WANG PING ; XU WANRONG ; SHAN YUANHE ; YUAN WUBEI ; JIN YINLI ; WEI XU ; YANG JINGWEN</creator><creatorcontrib>WANG PING ; XU WANRONG ; SHAN YUANHE ; YUAN WUBEI ; JIN YINLI ; WEI XU ; YANG JINGWEN</creatorcontrib><description>The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate.
一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SIGNALLING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191025&DB=EPODOC&CC=CN&NR=110378531A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20191025&DB=EPODOC&CC=CN&NR=110378531A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG PING</creatorcontrib><creatorcontrib>XU WANRONG</creatorcontrib><creatorcontrib>SHAN YUANHE</creatorcontrib><creatorcontrib>YUAN WUBEI</creatorcontrib><creatorcontrib>JIN YINLI</creatorcontrib><creatorcontrib>WEI XU</creatorcontrib><creatorcontrib>YANG JINGWEN</creatorcontrib><title>Traffic flow prediction method fusing spatial and temporal features</title><description>The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate.
一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAOKUpMS8tMVkjLyS9XKChKTclMLsnMz1PITS3JyE9RSCstzsxLVyguSCzJTMxRSMxLUShJzS3ILwJy0lITS0qLUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnwqUGtyal5qSbyzn6GhgbG5hamxoaMxMWoAntMyvQ</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>WANG PING</creator><creator>XU WANRONG</creator><creator>SHAN YUANHE</creator><creator>YUAN WUBEI</creator><creator>JIN YINLI</creator><creator>WEI XU</creator><creator>YANG JINGWEN</creator><scope>EVB</scope></search><sort><creationdate>20191025</creationdate><title>Traffic flow prediction method fusing spatial and temporal features</title><author>WANG PING ; XU WANRONG ; SHAN YUANHE ; YUAN WUBEI ; JIN YINLI ; WEI XU ; YANG JINGWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110378531A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG PING</creatorcontrib><creatorcontrib>XU WANRONG</creatorcontrib><creatorcontrib>SHAN YUANHE</creatorcontrib><creatorcontrib>YUAN WUBEI</creatorcontrib><creatorcontrib>JIN YINLI</creatorcontrib><creatorcontrib>WEI XU</creatorcontrib><creatorcontrib>YANG JINGWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG PING</au><au>XU WANRONG</au><au>SHAN YUANHE</au><au>YUAN WUBEI</au><au>JIN YINLI</au><au>WEI XU</au><au>YANG JINGWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Traffic flow prediction method fusing spatial and temporal features</title><date>2019-10-25</date><risdate>2019</risdate><abstract>The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate.
一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110378531A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SIGNALLING SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR TRAFFIC CONTROL SYSTEMS |
title | Traffic flow prediction method fusing spatial and temporal features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20PING&rft.date=2019-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110378531A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |