Traffic flow prediction method fusing spatial and temporal features

The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG PING, XU WANRONG, SHAN YUANHE, YUAN WUBEI, JIN YINLI, WEI XU, YANG JINGWEN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG PING
XU WANRONG
SHAN YUANHE
YUAN WUBEI
JIN YINLI
WEI XU
YANG JINGWEN
description The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate. 一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110378531A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110378531A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110378531A3</originalsourceid><addsrcrecordid>eNrjZHAOKUpMS8tMVkjLyS9XKChKTclMLsnMz1PITS3JyE9RSCstzsxLVyguSCzJTMxRSMxLUShJzS3ILwJy0lITS0qLUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnwqUGtyal5qSbyzn6GhgbG5hamxoaMxMWoAntMyvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Traffic flow prediction method fusing spatial and temporal features</title><source>esp@cenet</source><creator>WANG PING ; XU WANRONG ; SHAN YUANHE ; YUAN WUBEI ; JIN YINLI ; WEI XU ; YANG JINGWEN</creator><creatorcontrib>WANG PING ; XU WANRONG ; SHAN YUANHE ; YUAN WUBEI ; JIN YINLI ; WEI XU ; YANG JINGWEN</creatorcontrib><description>The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate. 一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SIGNALLING ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191025&amp;DB=EPODOC&amp;CC=CN&amp;NR=110378531A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191025&amp;DB=EPODOC&amp;CC=CN&amp;NR=110378531A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG PING</creatorcontrib><creatorcontrib>XU WANRONG</creatorcontrib><creatorcontrib>SHAN YUANHE</creatorcontrib><creatorcontrib>YUAN WUBEI</creatorcontrib><creatorcontrib>JIN YINLI</creatorcontrib><creatorcontrib>WEI XU</creatorcontrib><creatorcontrib>YANG JINGWEN</creatorcontrib><title>Traffic flow prediction method fusing spatial and temporal features</title><description>The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate. 一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAOKUpMS8tMVkjLyS9XKChKTclMLsnMz1PITS3JyE9RSCstzsxLVyguSCzJTMxRSMxLUShJzS3ILwJy0lITS0qLUot5GFjTEnOKU3mhNDeDoptriLOHbmpBfnwqUGtyal5qSbyzn6GhgbG5hamxoaMxMWoAntMyvQ</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>WANG PING</creator><creator>XU WANRONG</creator><creator>SHAN YUANHE</creator><creator>YUAN WUBEI</creator><creator>JIN YINLI</creator><creator>WEI XU</creator><creator>YANG JINGWEN</creator><scope>EVB</scope></search><sort><creationdate>20191025</creationdate><title>Traffic flow prediction method fusing spatial and temporal features</title><author>WANG PING ; XU WANRONG ; SHAN YUANHE ; YUAN WUBEI ; JIN YINLI ; WEI XU ; YANG JINGWEN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110378531A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG PING</creatorcontrib><creatorcontrib>XU WANRONG</creatorcontrib><creatorcontrib>SHAN YUANHE</creatorcontrib><creatorcontrib>YUAN WUBEI</creatorcontrib><creatorcontrib>JIN YINLI</creatorcontrib><creatorcontrib>WEI XU</creatorcontrib><creatorcontrib>YANG JINGWEN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG PING</au><au>XU WANRONG</au><au>SHAN YUANHE</au><au>YUAN WUBEI</au><au>JIN YINLI</au><au>WEI XU</au><au>YANG JINGWEN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Traffic flow prediction method fusing spatial and temporal features</title><date>2019-10-25</date><risdate>2019</risdate><abstract>The invention discloses a traffic flow prediction method fusing spatial and temporal features. The method comprises the following steps: step 1, preprocessing data; step 2, introducing an automatic encoder to obtain data characteristics; step 3, introducing an SAEs model and acquiring spatial feature ; step 4, introducing an LSTM model, and obtaining time features; step 5, synthesizing the SAEs model and the LSTM model to obtain an ideal hybrid model, and establishing a hybrid deep learning model SAES-LSTM to predict the traffic flow of an urban expressway. Time and space information is comprehensively utilized. The collected information of a database is analyzed and utilized more fully, and therefore a prediction result can be more accurate. 一种融合时空特征的交通流预测方法,包括以下步骤:步骤1,先对数据进行预处理;步骤2,引入自动编码器得到数据特征;步骤3,引入SAEs模型,获取空间特征;步骤4,引入LSTM模型,获取时间特征;步骤5,将SAEs模型与LSTM模型综合起来得到理想的混合模型,建立一种混合深度学习模型SAEs-LSTM来预测城市高速公路的交通流。本发明模型综合利用了时间与空间信息,对已收集到的数据库的信息分析利用得更充分,从而预测结果能更精准。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110378531A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SIGNALLING
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
TRAFFIC CONTROL SYSTEMS
title Traffic flow prediction method fusing spatial and temporal features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A26%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20PING&rft.date=2019-10-25&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110378531A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true