Network intrusion detection method based on multi-empirical kernel learning

The invention discloses a network intrusion detection method based on multi-empirical kernel learning. The method comprises the following steps: learning a preprocessed unbalanced network intrusion detection sample to obtain a midpoint sample of positive and negative samples with universal gravitati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI YANQIONG, DU WENLI, LI DONGDONG, WANG ZHE, MA MENGHAO, ZHANG JING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI YANQIONG
DU WENLI
LI DONGDONG
WANG ZHE
MA MENGHAO
ZHANG JING
description The invention discloses a network intrusion detection method based on multi-empirical kernel learning. The method comprises the following steps: learning a preprocessed unbalanced network intrusion detection sample to obtain a midpoint sample of positive and negative samples with universal gravitation balance and a neighbor sample of the midpoint sample; combining middle point samples and neighborsamples of the universal gravitation balanced positive and negative samples with multi-empirical kernel learning; and generating two regularization items in each kernel space, using generated regularization items corresponding to midpoint samples of the universal gravitation balanced positive and negative class samples for fitting classification boundaries, and using neighbor samples of the universal gravitation balanced positive and negative class samples for disturbing and correcting formation of the classification boundaries; and finally, performing voting on a classification result of each kernel space to obtain
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110324178A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110324178A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110324178A3</originalsourceid><addsrcrecordid>eNqNikEKwjAUBbNxIeodvgcoGCvoVooiCF25LzF51k_TJCS_eH0peABXMwOzVPcW8ol5IA6Sp8IxkIPAymwj5B0dPU2Bo7knL1xhTJzZGk8DcoAnD5MDh36tFi_jCzY_rtT2enk0twopdijJWARI17Ra7-r9QR9P5_qf5wutejX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Network intrusion detection method based on multi-empirical kernel learning</title><source>esp@cenet</source><creator>LI YANQIONG ; DU WENLI ; LI DONGDONG ; WANG ZHE ; MA MENGHAO ; ZHANG JING</creator><creatorcontrib>LI YANQIONG ; DU WENLI ; LI DONGDONG ; WANG ZHE ; MA MENGHAO ; ZHANG JING</creatorcontrib><description>The invention discloses a network intrusion detection method based on multi-empirical kernel learning. The method comprises the following steps: learning a preprocessed unbalanced network intrusion detection sample to obtain a midpoint sample of positive and negative samples with universal gravitation balance and a neighbor sample of the midpoint sample; combining middle point samples and neighborsamples of the universal gravitation balanced positive and negative samples with multi-empirical kernel learning; and generating two regularization items in each kernel space, using generated regularization items corresponding to midpoint samples of the universal gravitation balanced positive and negative class samples for fitting classification boundaries, and using neighbor samples of the universal gravitation balanced positive and negative class samples for disturbing and correcting formation of the classification boundaries; and finally, performing voting on a classification result of each kernel space to obtain</description><language>chi ; eng</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191011&amp;DB=EPODOC&amp;CC=CN&amp;NR=110324178A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20191011&amp;DB=EPODOC&amp;CC=CN&amp;NR=110324178A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI YANQIONG</creatorcontrib><creatorcontrib>DU WENLI</creatorcontrib><creatorcontrib>LI DONGDONG</creatorcontrib><creatorcontrib>WANG ZHE</creatorcontrib><creatorcontrib>MA MENGHAO</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><title>Network intrusion detection method based on multi-empirical kernel learning</title><description>The invention discloses a network intrusion detection method based on multi-empirical kernel learning. The method comprises the following steps: learning a preprocessed unbalanced network intrusion detection sample to obtain a midpoint sample of positive and negative samples with universal gravitation balance and a neighbor sample of the midpoint sample; combining middle point samples and neighborsamples of the universal gravitation balanced positive and negative samples with multi-empirical kernel learning; and generating two regularization items in each kernel space, using generated regularization items corresponding to midpoint samples of the universal gravitation balanced positive and negative class samples for fitting classification boundaries, and using neighbor samples of the universal gravitation balanced positive and negative class samples for disturbing and correcting formation of the classification boundaries; and finally, performing voting on a classification result of each kernel space to obtain</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAUBbNxIeodvgcoGCvoVooiCF25LzF51k_TJCS_eH0peABXMwOzVPcW8ol5IA6Sp8IxkIPAymwj5B0dPU2Bo7knL1xhTJzZGk8DcoAnD5MDh36tFi_jCzY_rtT2enk0twopdijJWARI17Ra7-r9QR9P5_qf5wutejX4</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>LI YANQIONG</creator><creator>DU WENLI</creator><creator>LI DONGDONG</creator><creator>WANG ZHE</creator><creator>MA MENGHAO</creator><creator>ZHANG JING</creator><scope>EVB</scope></search><sort><creationdate>20191011</creationdate><title>Network intrusion detection method based on multi-empirical kernel learning</title><author>LI YANQIONG ; DU WENLI ; LI DONGDONG ; WANG ZHE ; MA MENGHAO ; ZHANG JING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110324178A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>LI YANQIONG</creatorcontrib><creatorcontrib>DU WENLI</creatorcontrib><creatorcontrib>LI DONGDONG</creatorcontrib><creatorcontrib>WANG ZHE</creatorcontrib><creatorcontrib>MA MENGHAO</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI YANQIONG</au><au>DU WENLI</au><au>LI DONGDONG</au><au>WANG ZHE</au><au>MA MENGHAO</au><au>ZHANG JING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Network intrusion detection method based on multi-empirical kernel learning</title><date>2019-10-11</date><risdate>2019</risdate><abstract>The invention discloses a network intrusion detection method based on multi-empirical kernel learning. The method comprises the following steps: learning a preprocessed unbalanced network intrusion detection sample to obtain a midpoint sample of positive and negative samples with universal gravitation balance and a neighbor sample of the midpoint sample; combining middle point samples and neighborsamples of the universal gravitation balanced positive and negative samples with multi-empirical kernel learning; and generating two regularization items in each kernel space, using generated regularization items corresponding to midpoint samples of the universal gravitation balanced positive and negative class samples for fitting classification boundaries, and using neighbor samples of the universal gravitation balanced positive and negative class samples for disturbing and correcting formation of the classification boundaries; and finally, performing voting on a classification result of each kernel space to obtain</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110324178A
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title Network intrusion detection method based on multi-empirical kernel learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A19%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20YANQIONG&rft.date=2019-10-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110324178A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true