Liver pathological image sample enhancement method based on random transformation
The invention relates to a liver pathological image sample enhancement method based on random transformation, which comprises the following steps: 1) carrying out block division on a liver pathological image to obtain a plurality of image small blocks; 2) performing random transformation on each ima...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LU CHANGBIN CHEN LIQING YE MINGLI LIN LONGJIANG LEI XIAOYE DOU KANGYIN |
description | The invention relates to a liver pathological image sample enhancement method based on random transformation, which comprises the following steps: 1) carrying out block division on a liver pathological image to obtain a plurality of image small blocks; 2) performing random transformation on each image small block to form an extended sample; wherein the random transformation comprises more than one of horizontal mirror image overturning, vertical mirror image overturning, cutting, brightness adjustment, saturation adjustment and hue adjustment; and 3) inputting the extended sample into a deep learning model to train the liver pathological image, and performing corresponding enhancement on the liver pathological image to obtain an enhanced sample of the liver pathological image. According to the method, original pathological samples can be effectively expanded, the problems of insufficient sample number and non-uniform sample distribution are solved to a certain extent, the requirement of a large sample size of |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110288542A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110288542A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110288542A3</originalsourceid><addsrcrecordid>eNqNyrEKwjAQBuAsDqK-w_kAgq0KXaUoDiII7uVM_7aB5C4kwee3gw_g9C3f0jzv7oNEkcukXkdn2ZMLPIIyh-hBkInFIkAKBcyrpzdn9KRCiaXXQGU2D5oCF6eyNouBfcbm58psr5dXe9shaocc2UJQuvZRVfu6aU7H-nz453wBECQ4Lw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Liver pathological image sample enhancement method based on random transformation</title><source>esp@cenet</source><creator>LU CHANGBIN ; CHEN LIQING ; YE MINGLI ; LIN LONGJIANG ; LEI XIAOYE ; DOU KANGYIN</creator><creatorcontrib>LU CHANGBIN ; CHEN LIQING ; YE MINGLI ; LIN LONGJIANG ; LEI XIAOYE ; DOU KANGYIN</creatorcontrib><description>The invention relates to a liver pathological image sample enhancement method based on random transformation, which comprises the following steps: 1) carrying out block division on a liver pathological image to obtain a plurality of image small blocks; 2) performing random transformation on each image small block to form an extended sample; wherein the random transformation comprises more than one of horizontal mirror image overturning, vertical mirror image overturning, cutting, brightness adjustment, saturation adjustment and hue adjustment; and 3) inputting the extended sample into a deep learning model to train the liver pathological image, and performing corresponding enhancement on the liver pathological image to obtain an enhanced sample of the liver pathological image. According to the method, original pathological samples can be effectively expanded, the problems of insufficient sample number and non-uniform sample distribution are solved to a certain extent, the requirement of a large sample size of</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190927&DB=EPODOC&CC=CN&NR=110288542A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190927&DB=EPODOC&CC=CN&NR=110288542A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU CHANGBIN</creatorcontrib><creatorcontrib>CHEN LIQING</creatorcontrib><creatorcontrib>YE MINGLI</creatorcontrib><creatorcontrib>LIN LONGJIANG</creatorcontrib><creatorcontrib>LEI XIAOYE</creatorcontrib><creatorcontrib>DOU KANGYIN</creatorcontrib><title>Liver pathological image sample enhancement method based on random transformation</title><description>The invention relates to a liver pathological image sample enhancement method based on random transformation, which comprises the following steps: 1) carrying out block division on a liver pathological image to obtain a plurality of image small blocks; 2) performing random transformation on each image small block to form an extended sample; wherein the random transformation comprises more than one of horizontal mirror image overturning, vertical mirror image overturning, cutting, brightness adjustment, saturation adjustment and hue adjustment; and 3) inputting the extended sample into a deep learning model to train the liver pathological image, and performing corresponding enhancement on the liver pathological image to obtain an enhanced sample of the liver pathological image. According to the method, original pathological samples can be effectively expanded, the problems of insufficient sample number and non-uniform sample distribution are solved to a certain extent, the requirement of a large sample size of</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQBuAsDqK-w_kAgq0KXaUoDiII7uVM_7aB5C4kwee3gw_g9C3f0jzv7oNEkcukXkdn2ZMLPIIyh-hBkInFIkAKBcyrpzdn9KRCiaXXQGU2D5oCF6eyNouBfcbm58psr5dXe9shaocc2UJQuvZRVfu6aU7H-nz453wBECQ4Lw</recordid><startdate>20190927</startdate><enddate>20190927</enddate><creator>LU CHANGBIN</creator><creator>CHEN LIQING</creator><creator>YE MINGLI</creator><creator>LIN LONGJIANG</creator><creator>LEI XIAOYE</creator><creator>DOU KANGYIN</creator><scope>EVB</scope></search><sort><creationdate>20190927</creationdate><title>Liver pathological image sample enhancement method based on random transformation</title><author>LU CHANGBIN ; CHEN LIQING ; YE MINGLI ; LIN LONGJIANG ; LEI XIAOYE ; DOU KANGYIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110288542A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU CHANGBIN</creatorcontrib><creatorcontrib>CHEN LIQING</creatorcontrib><creatorcontrib>YE MINGLI</creatorcontrib><creatorcontrib>LIN LONGJIANG</creatorcontrib><creatorcontrib>LEI XIAOYE</creatorcontrib><creatorcontrib>DOU KANGYIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU CHANGBIN</au><au>CHEN LIQING</au><au>YE MINGLI</au><au>LIN LONGJIANG</au><au>LEI XIAOYE</au><au>DOU KANGYIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Liver pathological image sample enhancement method based on random transformation</title><date>2019-09-27</date><risdate>2019</risdate><abstract>The invention relates to a liver pathological image sample enhancement method based on random transformation, which comprises the following steps: 1) carrying out block division on a liver pathological image to obtain a plurality of image small blocks; 2) performing random transformation on each image small block to form an extended sample; wherein the random transformation comprises more than one of horizontal mirror image overturning, vertical mirror image overturning, cutting, brightness adjustment, saturation adjustment and hue adjustment; and 3) inputting the extended sample into a deep learning model to train the liver pathological image, and performing corresponding enhancement on the liver pathological image to obtain an enhanced sample of the liver pathological image. According to the method, original pathological samples can be effectively expanded, the problems of insufficient sample number and non-uniform sample distribution are solved to a certain extent, the requirement of a large sample size of</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110288542A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Liver pathological image sample enhancement method based on random transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20CHANGBIN&rft.date=2019-09-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110288542A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |