Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm

The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YANG GUANGLIN, GAO LIANCHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YANG GUANGLIN
GAO LIANCHENG
description The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110245578A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110245578A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110245578A3</originalsourceid><addsrcrecordid>eNqNzDsKwlAQQNE0FqLuYVyAYPygrQQ_lZV9GJNJMvh-zptH0NUbwQVY3eZwx5k5U9QkBEKVbx0reweWtPM1NF7AB2XLb3YtOEqCZoj2Xh7QE7edwv0FWH_VIJ4JnSYLAUW5MgSxR7GApvXC2tlpNmrQRJr9Osnmp-OtuCwo-JJiwIqGe1lc83y52my3u_1h_Y_5AN_LQyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><source>esp@cenet</source><creator>YANG GUANGLIN ; GAO LIANCHENG</creator><creatorcontrib>YANG GUANGLIN ; GAO LIANCHENG</creatorcontrib><description>The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190917&amp;DB=EPODOC&amp;CC=CN&amp;NR=110245578A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190917&amp;DB=EPODOC&amp;CC=CN&amp;NR=110245578A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG GUANGLIN</creatorcontrib><creatorcontrib>GAO LIANCHENG</creatorcontrib><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><description>The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDsKwlAQQNE0FqLuYVyAYPygrQQ_lZV9GJNJMvh-zptH0NUbwQVY3eZwx5k5U9QkBEKVbx0reweWtPM1NF7AB2XLb3YtOEqCZoj2Xh7QE7edwv0FWH_VIJ4JnSYLAUW5MgSxR7GApvXC2tlpNmrQRJr9Osnmp-OtuCwo-JJiwIqGe1lc83y52my3u_1h_Y_5AN_LQyE</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>YANG GUANGLIN</creator><creator>GAO LIANCHENG</creator><scope>EVB</scope></search><sort><creationdate>20190917</creationdate><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><author>YANG GUANGLIN ; GAO LIANCHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110245578A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG GUANGLIN</creatorcontrib><creatorcontrib>GAO LIANCHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG GUANGLIN</au><au>GAO LIANCHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><date>2019-09-17</date><risdate>2019</risdate><abstract>The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110245578A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20GUANGLIN&rft.date=2019-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110245578A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true