Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm
The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YANG GUANGLIN GAO LIANCHENG |
description | The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110245578A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110245578A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110245578A3</originalsourceid><addsrcrecordid>eNqNzDsKwlAQQNE0FqLuYVyAYPygrQQ_lZV9GJNJMvh-zptH0NUbwQVY3eZwx5k5U9QkBEKVbx0reweWtPM1NF7AB2XLb3YtOEqCZoj2Xh7QE7edwv0FWH_VIJ4JnSYLAUW5MgSxR7GApvXC2tlpNmrQRJr9Osnmp-OtuCwo-JJiwIqGe1lc83y52my3u_1h_Y_5AN_LQyE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><source>esp@cenet</source><creator>YANG GUANGLIN ; GAO LIANCHENG</creator><creatorcontrib>YANG GUANGLIN ; GAO LIANCHENG</creatorcontrib><description>The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190917&DB=EPODOC&CC=CN&NR=110245578A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190917&DB=EPODOC&CC=CN&NR=110245578A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YANG GUANGLIN</creatorcontrib><creatorcontrib>GAO LIANCHENG</creatorcontrib><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><description>The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzDsKwlAQQNE0FqLuYVyAYPygrQQ_lZV9GJNJMvh-zptH0NUbwQVY3eZwx5k5U9QkBEKVbx0reweWtPM1NF7AB2XLb3YtOEqCZoj2Xh7QE7edwv0FWH_VIJ4JnSYLAUW5MgSxR7GApvXC2tlpNmrQRJr9Osnmp-OtuCwo-JJiwIqGe1lc83y52my3u_1h_Y_5AN_LQyE</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>YANG GUANGLIN</creator><creator>GAO LIANCHENG</creator><scope>EVB</scope></search><sort><creationdate>20190917</creationdate><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><author>YANG GUANGLIN ; GAO LIANCHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110245578A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>YANG GUANGLIN</creatorcontrib><creatorcontrib>GAO LIANCHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YANG GUANGLIN</au><au>GAO LIANCHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm</title><date>2019-09-17</date><risdate>2019</risdate><abstract>The invention provides a gesture recognition method for optimizing a neural network weight by adopting a quantum particle swarm algorithm, and belongs to the technical field of visual gesture recognition in human-computer interaction. According to the method, the network parameters of the BP neural network are optimized by using the quantum particle swarm algorithm on the basis of gesture recognition by using the traditional neural network, and the method comprises the steps that firstly, the convolutional neural network is used for extracting the features of a gesture data set, the extracted feature vectors are input into the BP neural network for gesture recognition, and then the quantum particle swarm algorithm is used for replacing a traditional gradient descent method for updating the parameters of the network, and a better network weight value is obtained. According to the present invention, under the same data set and network structure, the final recognition accuracy can be remarkably improved, and the</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110245578A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Gesture recognition method for optimizing neural network weight by adopting quantum particle swarm algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A17%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YANG%20GUANGLIN&rft.date=2019-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110245578A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |