Row fixed data stream mapping method based on graph segmentation
The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementati...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG BOWEN WANG KUN GU HUAXI YANG YINTANG YAO XIYUE |
description | The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110110849A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110110849A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110110849A3</originalsourceid><addsrcrecordid>eNrjZHAIyi9XSMusSE1RSEksSVQoLilKTcxVyE0sKMjMS1fITS3JyE9RSEosBirIz1NIL0osyFAoTk3PTc0rSSzJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhgZAZGFi6WhMjBoAqUAxEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Row fixed data stream mapping method based on graph segmentation</title><source>esp@cenet</source><creator>ZHANG BOWEN ; WANG KUN ; GU HUAXI ; YANG YINTANG ; YAO XIYUE</creator><creatorcontrib>ZHANG BOWEN ; WANG KUN ; GU HUAXI ; YANG YINTANG ; YAO XIYUE</creatorcontrib><description>The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190809&DB=EPODOC&CC=CN&NR=110110849A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190809&DB=EPODOC&CC=CN&NR=110110849A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG BOWEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>GU HUAXI</creatorcontrib><creatorcontrib>YANG YINTANG</creatorcontrib><creatorcontrib>YAO XIYUE</creatorcontrib><title>Row fixed data stream mapping method based on graph segmentation</title><description>The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIyi9XSMusSE1RSEksSVQoLilKTcxVyE0sKMjMS1fITS3JyE9RSEosBirIz1NIL0osyFAoTk3PTc0rSSzJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhgZAZGFi6WhMjBoAqUAxEA</recordid><startdate>20190809</startdate><enddate>20190809</enddate><creator>ZHANG BOWEN</creator><creator>WANG KUN</creator><creator>GU HUAXI</creator><creator>YANG YINTANG</creator><creator>YAO XIYUE</creator><scope>EVB</scope></search><sort><creationdate>20190809</creationdate><title>Row fixed data stream mapping method based on graph segmentation</title><author>ZHANG BOWEN ; WANG KUN ; GU HUAXI ; YANG YINTANG ; YAO XIYUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110110849A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG BOWEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>GU HUAXI</creatorcontrib><creatorcontrib>YANG YINTANG</creatorcontrib><creatorcontrib>YAO XIYUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG BOWEN</au><au>WANG KUN</au><au>GU HUAXI</au><au>YANG YINTANG</au><au>YAO XIYUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Row fixed data stream mapping method based on graph segmentation</title><date>2019-08-09</date><risdate>2019</risdate><abstract>The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110110849A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Row fixed data stream mapping method based on graph segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20BOWEN&rft.date=2019-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110110849A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |