Row fixed data stream mapping method based on graph segmentation

The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG BOWEN, WANG KUN, GU HUAXI, YANG YINTANG, YAO XIYUE
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG BOWEN
WANG KUN
GU HUAXI
YANG YINTANG
YAO XIYUE
description The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110110849A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110110849A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110110849A3</originalsourceid><addsrcrecordid>eNrjZHAIyi9XSMusSE1RSEksSVQoLilKTcxVyE0sKMjMS1fITS3JyE9RSEosBirIz1NIL0osyFAoTk3PTc0rSSzJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhgZAZGFi6WhMjBoAqUAxEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Row fixed data stream mapping method based on graph segmentation</title><source>esp@cenet</source><creator>ZHANG BOWEN ; WANG KUN ; GU HUAXI ; YANG YINTANG ; YAO XIYUE</creator><creatorcontrib>ZHANG BOWEN ; WANG KUN ; GU HUAXI ; YANG YINTANG ; YAO XIYUE</creatorcontrib><description>The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190809&amp;DB=EPODOC&amp;CC=CN&amp;NR=110110849A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190809&amp;DB=EPODOC&amp;CC=CN&amp;NR=110110849A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG BOWEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>GU HUAXI</creatorcontrib><creatorcontrib>YANG YINTANG</creatorcontrib><creatorcontrib>YAO XIYUE</creatorcontrib><title>Row fixed data stream mapping method based on graph segmentation</title><description>The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAIyi9XSMusSE1RSEksSVQoLilKTcxVyE0sKMjMS1fITS3JyE9RSEosBirIz1NIL0osyFAoTk3PTc0rSSzJzM_jYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GhgZAZGFi6WhMjBoAqUAxEA</recordid><startdate>20190809</startdate><enddate>20190809</enddate><creator>ZHANG BOWEN</creator><creator>WANG KUN</creator><creator>GU HUAXI</creator><creator>YANG YINTANG</creator><creator>YAO XIYUE</creator><scope>EVB</scope></search><sort><creationdate>20190809</creationdate><title>Row fixed data stream mapping method based on graph segmentation</title><author>ZHANG BOWEN ; WANG KUN ; GU HUAXI ; YANG YINTANG ; YAO XIYUE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110110849A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG BOWEN</creatorcontrib><creatorcontrib>WANG KUN</creatorcontrib><creatorcontrib>GU HUAXI</creatorcontrib><creatorcontrib>YANG YINTANG</creatorcontrib><creatorcontrib>YAO XIYUE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG BOWEN</au><au>WANG KUN</au><au>GU HUAXI</au><au>YANG YINTANG</au><au>YAO XIYUE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Row fixed data stream mapping method based on graph segmentation</title><date>2019-08-09</date><risdate>2019</risdate><abstract>The invention discloses a row fixed data stream mapping method based on graph segmentation, and mainly solves the problems of limited application scene and low utilization rate of a processing array in the existing row fixed data stream mapping method. The method comprises the following implementation steps: 1, acquiring relevant parameters of a convolutional neural network convolutional layer anda processing array; 2, generating a mapping graph according to the parameters of the convolutional layer, and determining relevant parameters of the mapping graph; 3, performing mapping graph segmentation according to the mapping graph parameters and the processing array related parameters; and 4, generating corresponding data flow mapping according to a graph segmentation result. According to the invention, the mapping graph based on the row fixed data flow is segmented and mapped according to the processing array scale; while the high data reusability characteristic of the line fixed data flow is kept, the convolut</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110110849A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Row fixed data stream mapping method based on graph segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20BOWEN&rft.date=2019-08-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110110849A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true