Social content characterization method and system fusing text and label network
The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-g...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LI PEIWEN PENG HAO NING YUANXING GONG QIRAN LI JIANXIN |
description | The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network.
本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。 |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110019653A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110019653A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110019653A3</originalsourceid><addsrcrecordid>eNrjZPAPzk_OTMxRSM7PK0nNK1FIzkgsSkwuSS3KrEosyczPU8hNLcnIT1FIzEtRKK4sLknNVUgrLc7MS1coSa0oAQvnJCal5ijkpZaU5xdl8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxORUoMp4Zz9DQwMDQ0szU2NHY2LUAACU2zdS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Social content characterization method and system fusing text and label network</title><source>esp@cenet</source><creator>LI PEIWEN ; PENG HAO ; NING YUANXING ; GONG QIRAN ; LI JIANXIN</creator><creatorcontrib>LI PEIWEN ; PENG HAO ; NING YUANXING ; GONG QIRAN ; LI JIANXIN</creatorcontrib><description>The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network.
本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190716&DB=EPODOC&CC=CN&NR=110019653A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190716&DB=EPODOC&CC=CN&NR=110019653A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PEIWEN</creatorcontrib><creatorcontrib>PENG HAO</creatorcontrib><creatorcontrib>NING YUANXING</creatorcontrib><creatorcontrib>GONG QIRAN</creatorcontrib><creatorcontrib>LI JIANXIN</creatorcontrib><title>Social content characterization method and system fusing text and label network</title><description>The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network.
本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAPzk_OTMxRSM7PK0nNK1FIzkgsSkwuSS3KrEosyczPU8hNLcnIT1FIzEtRKK4sLknNVUgrLc7MS1coSa0oAQvnJCal5ijkpZaU5xdl8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxORUoMp4Zz9DQwMDQ0szU2NHY2LUAACU2zdS</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>LI PEIWEN</creator><creator>PENG HAO</creator><creator>NING YUANXING</creator><creator>GONG QIRAN</creator><creator>LI JIANXIN</creator><scope>EVB</scope></search><sort><creationdate>20190716</creationdate><title>Social content characterization method and system fusing text and label network</title><author>LI PEIWEN ; PENG HAO ; NING YUANXING ; GONG QIRAN ; LI JIANXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110019653A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PEIWEN</creatorcontrib><creatorcontrib>PENG HAO</creatorcontrib><creatorcontrib>NING YUANXING</creatorcontrib><creatorcontrib>GONG QIRAN</creatorcontrib><creatorcontrib>LI JIANXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PEIWEN</au><au>PENG HAO</au><au>NING YUANXING</au><au>GONG QIRAN</au><au>LI JIANXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Social content characterization method and system fusing text and label network</title><date>2019-07-16</date><risdate>2019</risdate><abstract>The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network.
本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110019653A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Social content characterization method and system fusing text and label network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PEIWEN&rft.date=2019-07-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110019653A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |