Social content characterization method and system fusing text and label network

The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI PEIWEN, PENG HAO, NING YUANXING, GONG QIRAN, LI JIANXIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI PEIWEN
PENG HAO
NING YUANXING
GONG QIRAN
LI JIANXIN
description The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network. 本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110019653A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110019653A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110019653A3</originalsourceid><addsrcrecordid>eNrjZPAPzk_OTMxRSM7PK0nNK1FIzkgsSkwuSS3KrEosyczPU8hNLcnIT1FIzEtRKK4sLknNVUgrLc7MS1coSa0oAQvnJCal5ijkpZaU5xdl8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxORUoMp4Zz9DQwMDQ0szU2NHY2LUAACU2zdS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Social content characterization method and system fusing text and label network</title><source>esp@cenet</source><creator>LI PEIWEN ; PENG HAO ; NING YUANXING ; GONG QIRAN ; LI JIANXIN</creator><creatorcontrib>LI PEIWEN ; PENG HAO ; NING YUANXING ; GONG QIRAN ; LI JIANXIN</creatorcontrib><description>The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network. 本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190716&amp;DB=EPODOC&amp;CC=CN&amp;NR=110019653A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190716&amp;DB=EPODOC&amp;CC=CN&amp;NR=110019653A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI PEIWEN</creatorcontrib><creatorcontrib>PENG HAO</creatorcontrib><creatorcontrib>NING YUANXING</creatorcontrib><creatorcontrib>GONG QIRAN</creatorcontrib><creatorcontrib>LI JIANXIN</creatorcontrib><title>Social content characterization method and system fusing text and label network</title><description>The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network. 本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAPzk_OTMxRSM7PK0nNK1FIzkgsSkwuSS3KrEosyczPU8hNLcnIT1FIzEtRKK4sLknNVUgrLc7MS1coSa0oAQvnJCal5ijkpZaU5xdl8zCwpiXmFKfyQmluBkU31xBnD93Ugvz41OKCxORUoMp4Zz9DQwMDQ0szU2NHY2LUAACU2zdS</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>LI PEIWEN</creator><creator>PENG HAO</creator><creator>NING YUANXING</creator><creator>GONG QIRAN</creator><creator>LI JIANXIN</creator><scope>EVB</scope></search><sort><creationdate>20190716</creationdate><title>Social content characterization method and system fusing text and label network</title><author>LI PEIWEN ; PENG HAO ; NING YUANXING ; GONG QIRAN ; LI JIANXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110019653A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI PEIWEN</creatorcontrib><creatorcontrib>PENG HAO</creatorcontrib><creatorcontrib>NING YUANXING</creatorcontrib><creatorcontrib>GONG QIRAN</creatorcontrib><creatorcontrib>LI JIANXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI PEIWEN</au><au>PENG HAO</au><au>NING YUANXING</au><au>GONG QIRAN</au><au>LI JIANXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Social content characterization method and system fusing text and label network</title><date>2019-07-16</date><risdate>2019</risdate><abstract>The invention discloses a social content characterization method and system fusing a text and a label network, and the method comprises the steps: carrying out the processing of text data, obtaining the graph representation of the text data, and carrying out the sorting of nodes in an obtained sub-graph according to a BFS; carrying out data structuring processing on the graph representation; establishing a label network, and randomly walking in the label network according to the meta-path to obtain vector representation of the label; and inputting the processed structured data into a neural network, and obtaining vector representation of a label based on the label network and the meta path to carry out LSTM + RNN training on the neural network. 本申请公开了一种融合文本和标签网络的社交内容表征方法和系统,所述方法包括:对文本数据进行处理,得到该文本数据的图表示,并对得到的子图中节点按照BFS进行排序;对所述图表示进行数据结构化处理;建立标签网络,并根据元路径在标签网络中随机游走得到标签的向量表示;将处理得到的结构化数据输入神经网络中,基于标签网络和元路径得到标签的向量表示对所述神经网络进行LSTM+RNN训练。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN110019653A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Social content characterization method and system fusing text and label network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A44%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20PEIWEN&rft.date=2019-07-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110019653A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true