Ship collision risk analysis method based on AIS (automatic identification system) data
The invention discloses a ship collision risk analysis method based on AIS (automatic identification system) data. Based on historical AIS data and standard ship selection and conversion, a density clustering algorithm is used for establishing a heat map of a ship collision risk to realize spatiotem...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIANG MAOHAN LIU WEN LIU ZHAO SUN PENG XU SHUGAO LIU JINGXIAN |
description | The invention discloses a ship collision risk analysis method based on AIS (automatic identification system) data. Based on historical AIS data and standard ship selection and conversion, a density clustering algorithm is used for establishing a heat map of a ship collision risk to realize spatiotemporal visualization of the ship collision risk; based on real-time AIS data and the ship position field, the course direction field, and the navigational speed field, a regional ship collision risk assessment model is constructed, and a Gaussian kernel function kernel density estimation algorithm isused for proposing a dynamic ship collision risk visualization method to realize areal-time update of the regional ship collision risk. The ship collision risk analysis method is based on the AISdata,the spatiotemporal visualization of the ship collision risk is realized,the visual image after the complex abstract ship traffic flow multi-attribute information is effectively dug and fused is realized, so that the risk lev |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110009937A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110009937A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110009937A3</originalsourceid><addsrcrecordid>eNqNirsKwkAQANNYiPoPa6eFkJBCUoagaGMTwTKsdxuyeC_ctcjfe4UfYDUMM8vi0U-cwETnWDgGeLO8AAO6WVjAk07RwhOFLOTaXnvY4UejR2UDbCkoj2yy5SqzKPk9WFRcF4sRndDmx1WxPZ_u3eVAKQ4kCQ0F0qG7VVVZlk1TH9v6n-cLJhc5cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ship collision risk analysis method based on AIS (automatic identification system) data</title><source>esp@cenet</source><creator>LIANG MAOHAN ; LIU WEN ; LIU ZHAO ; SUN PENG ; XU SHUGAO ; LIU JINGXIAN</creator><creatorcontrib>LIANG MAOHAN ; LIU WEN ; LIU ZHAO ; SUN PENG ; XU SHUGAO ; LIU JINGXIAN</creatorcontrib><description>The invention discloses a ship collision risk analysis method based on AIS (automatic identification system) data. Based on historical AIS data and standard ship selection and conversion, a density clustering algorithm is used for establishing a heat map of a ship collision risk to realize spatiotemporal visualization of the ship collision risk; based on real-time AIS data and the ship position field, the course direction field, and the navigational speed field, a regional ship collision risk assessment model is constructed, and a Gaussian kernel function kernel density estimation algorithm isused for proposing a dynamic ship collision risk visualization method to realize areal-time update of the regional ship collision risk. The ship collision risk analysis method is based on the AISdata,the spatiotemporal visualization of the ship collision risk is realized,the visual image after the complex abstract ship traffic flow multi-attribute information is effectively dug and fused is realized, so that the risk lev</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SIGNALLING ; TRAFFIC CONTROL SYSTEMS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190712&DB=EPODOC&CC=CN&NR=110009937A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190712&DB=EPODOC&CC=CN&NR=110009937A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIANG MAOHAN</creatorcontrib><creatorcontrib>LIU WEN</creatorcontrib><creatorcontrib>LIU ZHAO</creatorcontrib><creatorcontrib>SUN PENG</creatorcontrib><creatorcontrib>XU SHUGAO</creatorcontrib><creatorcontrib>LIU JINGXIAN</creatorcontrib><title>Ship collision risk analysis method based on AIS (automatic identification system) data</title><description>The invention discloses a ship collision risk analysis method based on AIS (automatic identification system) data. Based on historical AIS data and standard ship selection and conversion, a density clustering algorithm is used for establishing a heat map of a ship collision risk to realize spatiotemporal visualization of the ship collision risk; based on real-time AIS data and the ship position field, the course direction field, and the navigational speed field, a regional ship collision risk assessment model is constructed, and a Gaussian kernel function kernel density estimation algorithm isused for proposing a dynamic ship collision risk visualization method to realize areal-time update of the regional ship collision risk. The ship collision risk analysis method is based on the AISdata,the spatiotemporal visualization of the ship collision risk is realized,the visual image after the complex abstract ship traffic flow multi-attribute information is effectively dug and fused is realized, so that the risk lev</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>TRAFFIC CONTROL SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirsKwkAQANNYiPoPa6eFkJBCUoagaGMTwTKsdxuyeC_ctcjfe4UfYDUMM8vi0U-cwETnWDgGeLO8AAO6WVjAk07RwhOFLOTaXnvY4UejR2UDbCkoj2yy5SqzKPk9WFRcF4sRndDmx1WxPZ_u3eVAKQ4kCQ0F0qG7VVVZlk1TH9v6n-cLJhc5cg</recordid><startdate>20190712</startdate><enddate>20190712</enddate><creator>LIANG MAOHAN</creator><creator>LIU WEN</creator><creator>LIU ZHAO</creator><creator>SUN PENG</creator><creator>XU SHUGAO</creator><creator>LIU JINGXIAN</creator><scope>EVB</scope></search><sort><creationdate>20190712</creationdate><title>Ship collision risk analysis method based on AIS (automatic identification system) data</title><author>LIANG MAOHAN ; LIU WEN ; LIU ZHAO ; SUN PENG ; XU SHUGAO ; LIU JINGXIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110009937A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>TRAFFIC CONTROL SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIANG MAOHAN</creatorcontrib><creatorcontrib>LIU WEN</creatorcontrib><creatorcontrib>LIU ZHAO</creatorcontrib><creatorcontrib>SUN PENG</creatorcontrib><creatorcontrib>XU SHUGAO</creatorcontrib><creatorcontrib>LIU JINGXIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIANG MAOHAN</au><au>LIU WEN</au><au>LIU ZHAO</au><au>SUN PENG</au><au>XU SHUGAO</au><au>LIU JINGXIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ship collision risk analysis method based on AIS (automatic identification system) data</title><date>2019-07-12</date><risdate>2019</risdate><abstract>The invention discloses a ship collision risk analysis method based on AIS (automatic identification system) data. Based on historical AIS data and standard ship selection and conversion, a density clustering algorithm is used for establishing a heat map of a ship collision risk to realize spatiotemporal visualization of the ship collision risk; based on real-time AIS data and the ship position field, the course direction field, and the navigational speed field, a regional ship collision risk assessment model is constructed, and a Gaussian kernel function kernel density estimation algorithm isused for proposing a dynamic ship collision risk visualization method to realize areal-time update of the regional ship collision risk. The ship collision risk analysis method is based on the AISdata,the spatiotemporal visualization of the ship collision risk is realized,the visual image after the complex abstract ship traffic flow multi-attribute information is effectively dug and fused is realized, so that the risk lev</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110009937A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS SIGNALLING TRAFFIC CONTROL SYSTEMS |
title | Ship collision risk analysis method based on AIS (automatic identification system) data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A10%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIANG%20MAOHAN&rft.date=2019-07-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110009937A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |