Self-adaptive median strongnoise interference seismic data denoising method based on wavelet decomposition
The invention provides aself-adaptive median strong noise interference seismic data denoising method based on wavelet decomposition, which comprises the steps that seismic data are subjected to wavelet decomposition, a decomposition result is subjected to initial median filter processing; data is su...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GUAN JIAN LI JIANMING GU YUTIAN LIU RUIHE LIU CHENGZHAI DONG YUECHANG BI LIFEI |
description | The invention provides aself-adaptive median strong noise interference seismic data denoising method based on wavelet decomposition, which comprises the steps that seismic data are subjected to wavelet decomposition, a decomposition result is subjected to initial median filter processing; data is subjected to convolution treatment through a filter based on discrete cosine transform, the variance and kurtosis of obtained response data are estimated to further estimate the noise variance;based on a reference median filter window, the length of a filter window is reasonably selected according todifferent noise level estimations to define the length of a median filter window; the self-adaptive median filter is used for filtering the data, the length of the median filter window is adjusted ina self-adaptive mode according to thenoise levels of different regions; and the data subjected to median filtering treatment are reconstructed to obtain denoised seismic data. According to the self-adaptive median strong noise |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN110007346A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN110007346A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN110007346A3</originalsourceid><addsrcrecordid>eNqNyzEOgkAQRmEaC6PeYTwACQSjtSEaKxvtybj7g2NgdsNs8Ppi4gGsXvO9Zfa6oW9z9hyTTKABXljJ0hi00yAGEk0YW4xQBzKIDeLIc2Ly-ArRbt7SM3h6sMFTUHrzhB5pFi4MMZgkCbrOFi33hs2vq2x7Pt3rS44YGlhkB0Vq6mtZFkVxqHb7Y_WP-QAGHUHe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Self-adaptive median strongnoise interference seismic data denoising method based on wavelet decomposition</title><source>esp@cenet</source><creator>GUAN JIAN ; LI JIANMING ; GU YUTIAN ; LIU RUIHE ; LIU CHENGZHAI ; DONG YUECHANG ; BI LIFEI</creator><creatorcontrib>GUAN JIAN ; LI JIANMING ; GU YUTIAN ; LIU RUIHE ; LIU CHENGZHAI ; DONG YUECHANG ; BI LIFEI</creatorcontrib><description>The invention provides aself-adaptive median strong noise interference seismic data denoising method based on wavelet decomposition, which comprises the steps that seismic data are subjected to wavelet decomposition, a decomposition result is subjected to initial median filter processing; data is subjected to convolution treatment through a filter based on discrete cosine transform, the variance and kurtosis of obtained response data are estimated to further estimate the noise variance;based on a reference median filter window, the length of a filter window is reasonably selected according todifferent noise level estimations to define the length of a median filter window; the self-adaptive median filter is used for filtering the data, the length of the median filter window is adjusted ina self-adaptive mode according to thenoise levels of different regions; and the data subjected to median filtering treatment are reconstructed to obtain denoised seismic data. According to the self-adaptive median strong noise</description><language>chi ; eng</language><subject>DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190712&DB=EPODOC&CC=CN&NR=110007346A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190712&DB=EPODOC&CC=CN&NR=110007346A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GUAN JIAN</creatorcontrib><creatorcontrib>LI JIANMING</creatorcontrib><creatorcontrib>GU YUTIAN</creatorcontrib><creatorcontrib>LIU RUIHE</creatorcontrib><creatorcontrib>LIU CHENGZHAI</creatorcontrib><creatorcontrib>DONG YUECHANG</creatorcontrib><creatorcontrib>BI LIFEI</creatorcontrib><title>Self-adaptive median strongnoise interference seismic data denoising method based on wavelet decomposition</title><description>The invention provides aself-adaptive median strong noise interference seismic data denoising method based on wavelet decomposition, which comprises the steps that seismic data are subjected to wavelet decomposition, a decomposition result is subjected to initial median filter processing; data is subjected to convolution treatment through a filter based on discrete cosine transform, the variance and kurtosis of obtained response data are estimated to further estimate the noise variance;based on a reference median filter window, the length of a filter window is reasonably selected according todifferent noise level estimations to define the length of a median filter window; the self-adaptive median filter is used for filtering the data, the length of the median filter window is adjusted ina self-adaptive mode according to thenoise levels of different regions; and the data subjected to median filtering treatment are reconstructed to obtain denoised seismic data. According to the self-adaptive median strong noise</description><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEOgkAQRmEaC6PeYTwACQSjtSEaKxvtybj7g2NgdsNs8Ppi4gGsXvO9Zfa6oW9z9hyTTKABXljJ0hi00yAGEk0YW4xQBzKIDeLIc2Ly-ArRbt7SM3h6sMFTUHrzhB5pFi4MMZgkCbrOFi33hs2vq2x7Pt3rS44YGlhkB0Vq6mtZFkVxqHb7Y_WP-QAGHUHe</recordid><startdate>20190712</startdate><enddate>20190712</enddate><creator>GUAN JIAN</creator><creator>LI JIANMING</creator><creator>GU YUTIAN</creator><creator>LIU RUIHE</creator><creator>LIU CHENGZHAI</creator><creator>DONG YUECHANG</creator><creator>BI LIFEI</creator><scope>EVB</scope></search><sort><creationdate>20190712</creationdate><title>Self-adaptive median strongnoise interference seismic data denoising method based on wavelet decomposition</title><author>GUAN JIAN ; LI JIANMING ; GU YUTIAN ; LIU RUIHE ; LIU CHENGZHAI ; DONG YUECHANG ; BI LIFEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN110007346A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GUAN JIAN</creatorcontrib><creatorcontrib>LI JIANMING</creatorcontrib><creatorcontrib>GU YUTIAN</creatorcontrib><creatorcontrib>LIU RUIHE</creatorcontrib><creatorcontrib>LIU CHENGZHAI</creatorcontrib><creatorcontrib>DONG YUECHANG</creatorcontrib><creatorcontrib>BI LIFEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GUAN JIAN</au><au>LI JIANMING</au><au>GU YUTIAN</au><au>LIU RUIHE</au><au>LIU CHENGZHAI</au><au>DONG YUECHANG</au><au>BI LIFEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Self-adaptive median strongnoise interference seismic data denoising method based on wavelet decomposition</title><date>2019-07-12</date><risdate>2019</risdate><abstract>The invention provides aself-adaptive median strong noise interference seismic data denoising method based on wavelet decomposition, which comprises the steps that seismic data are subjected to wavelet decomposition, a decomposition result is subjected to initial median filter processing; data is subjected to convolution treatment through a filter based on discrete cosine transform, the variance and kurtosis of obtained response data are estimated to further estimate the noise variance;based on a reference median filter window, the length of a filter window is reasonably selected according todifferent noise level estimations to define the length of a median filter window; the self-adaptive median filter is used for filtering the data, the length of the median filter window is adjusted ina self-adaptive mode according to thenoise levels of different regions; and the data subjected to median filtering treatment are reconstructed to obtain denoised seismic data. According to the self-adaptive median strong noise</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN110007346A |
source | esp@cenet |
subjects | DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS MEASURING PHYSICS TESTING |
title | Self-adaptive median strongnoise interference seismic data denoising method based on wavelet decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T19%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GUAN%20JIAN&rft.date=2019-07-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN110007346A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |