Remote sensing image object level change detection method

The invention discloses a remote sensing image object level change detection method. The method specifically comprises the steps of image preliminary processing, mean filtering obtaining calculation and image analysis based on a convolutional neural network. The invention provides a self-adaptive k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LU YAN, JIANG RUIBO, SHA CONGSHU, LIU SHAOTANG, ZHANG HUIFENG, XIE RUI, ZHAN XIANYUN, WU JUN, YANG MINGDONG, LIU XIAOQIANG, XU LIANG, YANG FUQIN, CHEN CHAO, WEN RUI, XIAO HAIHONG, XU CHENGGONG, PAN JIECHEN, ZHANG DI, XU HAIWEI, ZHANG SHUHUA, WANG GUO, CAI QINGKONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LU YAN
JIANG RUIBO
SHA CONGSHU
LIU SHAOTANG
ZHANG HUIFENG
XIE RUI
ZHAN XIANYUN
WU JUN
YANG MINGDONG
LIU XIAOQIANG
XU LIANG
YANG FUQIN
CHEN CHAO
WEN RUI
XIAO HAIHONG
XU CHENGGONG
PAN JIECHEN
ZHANG DI
XU HAIWEI
ZHANG SHUHUA
WANG GUO
CAI QINGKONG
description The invention discloses a remote sensing image object level change detection method. The method specifically comprises the steps of image preliminary processing, mean filtering obtaining calculation and image analysis based on a convolutional neural network. The invention provides a self-adaptive k value calculation method, and provides a remote sensing image object level change detection method.The preliminary graph is acquired on the basis of the deep full convolutional neural network model as a whole, and the image is finally subjected to binarization processing on the basis of a corresponding algorithm, so that digital processing of the image is realized, later change detection can be conveniently carried out on the image on the basis of the digital processing of the image, and the detection precision and accuracy are improved. 本发明公开了一种遥感图像对象层次的变化检测方法,具体包括具体包括图像初步处理、均值滤波获取计算以及基于卷积神经网络的图像分析;本发明提出了一个自适应的k值计算方法本发明提出了一种遥感图像对象层次的变化检测方法,整体基于深度全卷积神经网络模型来获取初步图形,并基于对应的算法最终将图像进行二值化处理,从而实现图像的数字化处理,此时基于图像的数字化处理可以方便的对
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109993104A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109993104A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109993104A3</originalsourceid><addsrcrecordid>eNrjZLAMSs3NL0lVKE7NK87MS1fIzE1MT1XIT8pKTS5RyEktS81RSM5IzAOKpaSWAMUy8_MUclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoYGlpaWxoYGJozExagA4uS6j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Remote sensing image object level change detection method</title><source>esp@cenet</source><creator>LU YAN ; JIANG RUIBO ; SHA CONGSHU ; LIU SHAOTANG ; ZHANG HUIFENG ; XIE RUI ; ZHAN XIANYUN ; WU JUN ; YANG MINGDONG ; LIU XIAOQIANG ; XU LIANG ; YANG FUQIN ; CHEN CHAO ; WEN RUI ; XIAO HAIHONG ; XU CHENGGONG ; PAN JIECHEN ; ZHANG DI ; XU HAIWEI ; ZHANG SHUHUA ; WANG GUO ; CAI QINGKONG</creator><creatorcontrib>LU YAN ; JIANG RUIBO ; SHA CONGSHU ; LIU SHAOTANG ; ZHANG HUIFENG ; XIE RUI ; ZHAN XIANYUN ; WU JUN ; YANG MINGDONG ; LIU XIAOQIANG ; XU LIANG ; YANG FUQIN ; CHEN CHAO ; WEN RUI ; XIAO HAIHONG ; XU CHENGGONG ; PAN JIECHEN ; ZHANG DI ; XU HAIWEI ; ZHANG SHUHUA ; WANG GUO ; CAI QINGKONG</creatorcontrib><description>The invention discloses a remote sensing image object level change detection method. The method specifically comprises the steps of image preliminary processing, mean filtering obtaining calculation and image analysis based on a convolutional neural network. The invention provides a self-adaptive k value calculation method, and provides a remote sensing image object level change detection method.The preliminary graph is acquired on the basis of the deep full convolutional neural network model as a whole, and the image is finally subjected to binarization processing on the basis of a corresponding algorithm, so that digital processing of the image is realized, later change detection can be conveniently carried out on the image on the basis of the digital processing of the image, and the detection precision and accuracy are improved. 本发明公开了一种遥感图像对象层次的变化检测方法,具体包括具体包括图像初步处理、均值滤波获取计算以及基于卷积神经网络的图像分析;本发明提出了一个自适应的k值计算方法本发明提出了一种遥感图像对象层次的变化检测方法,整体基于深度全卷积神经网络模型来获取初步图形,并基于对应的算法最终将图像进行二值化处理,从而实现图像的数字化处理,此时基于图像的数字化处理可以方便的对</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190709&amp;DB=EPODOC&amp;CC=CN&amp;NR=109993104A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25555,76308</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190709&amp;DB=EPODOC&amp;CC=CN&amp;NR=109993104A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LU YAN</creatorcontrib><creatorcontrib>JIANG RUIBO</creatorcontrib><creatorcontrib>SHA CONGSHU</creatorcontrib><creatorcontrib>LIU SHAOTANG</creatorcontrib><creatorcontrib>ZHANG HUIFENG</creatorcontrib><creatorcontrib>XIE RUI</creatorcontrib><creatorcontrib>ZHAN XIANYUN</creatorcontrib><creatorcontrib>WU JUN</creatorcontrib><creatorcontrib>YANG MINGDONG</creatorcontrib><creatorcontrib>LIU XIAOQIANG</creatorcontrib><creatorcontrib>XU LIANG</creatorcontrib><creatorcontrib>YANG FUQIN</creatorcontrib><creatorcontrib>CHEN CHAO</creatorcontrib><creatorcontrib>WEN RUI</creatorcontrib><creatorcontrib>XIAO HAIHONG</creatorcontrib><creatorcontrib>XU CHENGGONG</creatorcontrib><creatorcontrib>PAN JIECHEN</creatorcontrib><creatorcontrib>ZHANG DI</creatorcontrib><creatorcontrib>XU HAIWEI</creatorcontrib><creatorcontrib>ZHANG SHUHUA</creatorcontrib><creatorcontrib>WANG GUO</creatorcontrib><creatorcontrib>CAI QINGKONG</creatorcontrib><title>Remote sensing image object level change detection method</title><description>The invention discloses a remote sensing image object level change detection method. The method specifically comprises the steps of image preliminary processing, mean filtering obtaining calculation and image analysis based on a convolutional neural network. The invention provides a self-adaptive k value calculation method, and provides a remote sensing image object level change detection method.The preliminary graph is acquired on the basis of the deep full convolutional neural network model as a whole, and the image is finally subjected to binarization processing on the basis of a corresponding algorithm, so that digital processing of the image is realized, later change detection can be conveniently carried out on the image on the basis of the digital processing of the image, and the detection precision and accuracy are improved. 本发明公开了一种遥感图像对象层次的变化检测方法,具体包括具体包括图像初步处理、均值滤波获取计算以及基于卷积神经网络的图像分析;本发明提出了一个自适应的k值计算方法本发明提出了一种遥感图像对象层次的变化检测方法,整体基于深度全卷积神经网络模型来获取初步图形,并基于对应的算法最终将图像进行二值化处理,从而实现图像的数字化处理,此时基于图像的数字化处理可以方便的对</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAMSs3NL0lVKE7NK87MS1fIzE1MT1XIT8pKTS5RyEktS81RSM5IzAOKpaSWAMUy8_MUclNLMvJTeBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoYGlpaWxoYGJozExagA4uS6j</recordid><startdate>20190709</startdate><enddate>20190709</enddate><creator>LU YAN</creator><creator>JIANG RUIBO</creator><creator>SHA CONGSHU</creator><creator>LIU SHAOTANG</creator><creator>ZHANG HUIFENG</creator><creator>XIE RUI</creator><creator>ZHAN XIANYUN</creator><creator>WU JUN</creator><creator>YANG MINGDONG</creator><creator>LIU XIAOQIANG</creator><creator>XU LIANG</creator><creator>YANG FUQIN</creator><creator>CHEN CHAO</creator><creator>WEN RUI</creator><creator>XIAO HAIHONG</creator><creator>XU CHENGGONG</creator><creator>PAN JIECHEN</creator><creator>ZHANG DI</creator><creator>XU HAIWEI</creator><creator>ZHANG SHUHUA</creator><creator>WANG GUO</creator><creator>CAI QINGKONG</creator><scope>EVB</scope></search><sort><creationdate>20190709</creationdate><title>Remote sensing image object level change detection method</title><author>LU YAN ; JIANG RUIBO ; SHA CONGSHU ; LIU SHAOTANG ; ZHANG HUIFENG ; XIE RUI ; ZHAN XIANYUN ; WU JUN ; YANG MINGDONG ; LIU XIAOQIANG ; XU LIANG ; YANG FUQIN ; CHEN CHAO ; WEN RUI ; XIAO HAIHONG ; XU CHENGGONG ; PAN JIECHEN ; ZHANG DI ; XU HAIWEI ; ZHANG SHUHUA ; WANG GUO ; CAI QINGKONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109993104A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LU YAN</creatorcontrib><creatorcontrib>JIANG RUIBO</creatorcontrib><creatorcontrib>SHA CONGSHU</creatorcontrib><creatorcontrib>LIU SHAOTANG</creatorcontrib><creatorcontrib>ZHANG HUIFENG</creatorcontrib><creatorcontrib>XIE RUI</creatorcontrib><creatorcontrib>ZHAN XIANYUN</creatorcontrib><creatorcontrib>WU JUN</creatorcontrib><creatorcontrib>YANG MINGDONG</creatorcontrib><creatorcontrib>LIU XIAOQIANG</creatorcontrib><creatorcontrib>XU LIANG</creatorcontrib><creatorcontrib>YANG FUQIN</creatorcontrib><creatorcontrib>CHEN CHAO</creatorcontrib><creatorcontrib>WEN RUI</creatorcontrib><creatorcontrib>XIAO HAIHONG</creatorcontrib><creatorcontrib>XU CHENGGONG</creatorcontrib><creatorcontrib>PAN JIECHEN</creatorcontrib><creatorcontrib>ZHANG DI</creatorcontrib><creatorcontrib>XU HAIWEI</creatorcontrib><creatorcontrib>ZHANG SHUHUA</creatorcontrib><creatorcontrib>WANG GUO</creatorcontrib><creatorcontrib>CAI QINGKONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LU YAN</au><au>JIANG RUIBO</au><au>SHA CONGSHU</au><au>LIU SHAOTANG</au><au>ZHANG HUIFENG</au><au>XIE RUI</au><au>ZHAN XIANYUN</au><au>WU JUN</au><au>YANG MINGDONG</au><au>LIU XIAOQIANG</au><au>XU LIANG</au><au>YANG FUQIN</au><au>CHEN CHAO</au><au>WEN RUI</au><au>XIAO HAIHONG</au><au>XU CHENGGONG</au><au>PAN JIECHEN</au><au>ZHANG DI</au><au>XU HAIWEI</au><au>ZHANG SHUHUA</au><au>WANG GUO</au><au>CAI QINGKONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Remote sensing image object level change detection method</title><date>2019-07-09</date><risdate>2019</risdate><abstract>The invention discloses a remote sensing image object level change detection method. The method specifically comprises the steps of image preliminary processing, mean filtering obtaining calculation and image analysis based on a convolutional neural network. The invention provides a self-adaptive k value calculation method, and provides a remote sensing image object level change detection method.The preliminary graph is acquired on the basis of the deep full convolutional neural network model as a whole, and the image is finally subjected to binarization processing on the basis of a corresponding algorithm, so that digital processing of the image is realized, later change detection can be conveniently carried out on the image on the basis of the digital processing of the image, and the detection precision and accuracy are improved. 本发明公开了一种遥感图像对象层次的变化检测方法,具体包括具体包括图像初步处理、均值滤波获取计算以及基于卷积神经网络的图像分析;本发明提出了一个自适应的k值计算方法本发明提出了一种遥感图像对象层次的变化检测方法,整体基于深度全卷积神经网络模型来获取初步图形,并基于对应的算法最终将图像进行二值化处理,从而实现图像的数字化处理,此时基于图像的数字化处理可以方便的对</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109993104A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Remote sensing image object level change detection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LU%20YAN&rft.date=2019-07-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109993104A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true