An underground early warning method based on a hidden Markov model

The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: TONG XINGGE, XIE JING, ZHENG JIN, CHEN YAN, ZHONG XUEYAN, LI PING, LIU YING, ZHONG YUAN, GE YI, DAI ZHEN, HUANG JIAXIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator TONG XINGGE
XIE JING
ZHENG JIN
CHEN YAN
ZHONG XUEYAN
LI PING
LIU YING
ZHONG YUAN
GE YI
DAI ZHEN
HUANG JIAXIN
description The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109902265A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109902265A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109902265A3</originalsourceid><addsrcrecordid>eNrjZHByzFMozUtJLUovygfSCqmJRTmVCuWJRXmZeekKuaklGfkpCkmJxakpCvl5CokKGZkpKal5Cr6JRdn5ZQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DA0tLAyMjM1NGYGDUACAQxhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>An underground early warning method based on a hidden Markov model</title><source>esp@cenet</source><creator>TONG XINGGE ; XIE JING ; ZHENG JIN ; CHEN YAN ; ZHONG XUEYAN ; LI PING ; LIU YING ; ZHONG YUAN ; GE YI ; DAI ZHEN ; HUANG JIAXIN</creator><creatorcontrib>TONG XINGGE ; XIE JING ; ZHENG JIN ; CHEN YAN ; ZHONG XUEYAN ; LI PING ; LIU YING ; ZHONG YUAN ; GE YI ; DAI ZHEN ; HUANG JIAXIN</creatorcontrib><description>The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190618&amp;DB=EPODOC&amp;CC=CN&amp;NR=109902265A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190618&amp;DB=EPODOC&amp;CC=CN&amp;NR=109902265A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TONG XINGGE</creatorcontrib><creatorcontrib>XIE JING</creatorcontrib><creatorcontrib>ZHENG JIN</creatorcontrib><creatorcontrib>CHEN YAN</creatorcontrib><creatorcontrib>ZHONG XUEYAN</creatorcontrib><creatorcontrib>LI PING</creatorcontrib><creatorcontrib>LIU YING</creatorcontrib><creatorcontrib>ZHONG YUAN</creatorcontrib><creatorcontrib>GE YI</creatorcontrib><creatorcontrib>DAI ZHEN</creatorcontrib><creatorcontrib>HUANG JIAXIN</creatorcontrib><title>An underground early warning method based on a hidden Markov model</title><description>The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHByzFMozUtJLUovygfSCqmJRTmVCuWJRXmZeekKuaklGfkpCkmJxakpCvl5CokKGZkpKal5Cr6JRdn5ZQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DA0tLAyMjM1NGYGDUACAQxhw</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>TONG XINGGE</creator><creator>XIE JING</creator><creator>ZHENG JIN</creator><creator>CHEN YAN</creator><creator>ZHONG XUEYAN</creator><creator>LI PING</creator><creator>LIU YING</creator><creator>ZHONG YUAN</creator><creator>GE YI</creator><creator>DAI ZHEN</creator><creator>HUANG JIAXIN</creator><scope>EVB</scope></search><sort><creationdate>20190618</creationdate><title>An underground early warning method based on a hidden Markov model</title><author>TONG XINGGE ; XIE JING ; ZHENG JIN ; CHEN YAN ; ZHONG XUEYAN ; LI PING ; LIU YING ; ZHONG YUAN ; GE YI ; DAI ZHEN ; HUANG JIAXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109902265A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TONG XINGGE</creatorcontrib><creatorcontrib>XIE JING</creatorcontrib><creatorcontrib>ZHENG JIN</creatorcontrib><creatorcontrib>CHEN YAN</creatorcontrib><creatorcontrib>ZHONG XUEYAN</creatorcontrib><creatorcontrib>LI PING</creatorcontrib><creatorcontrib>LIU YING</creatorcontrib><creatorcontrib>ZHONG YUAN</creatorcontrib><creatorcontrib>GE YI</creatorcontrib><creatorcontrib>DAI ZHEN</creatorcontrib><creatorcontrib>HUANG JIAXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TONG XINGGE</au><au>XIE JING</au><au>ZHENG JIN</au><au>CHEN YAN</au><au>ZHONG XUEYAN</au><au>LI PING</au><au>LIU YING</au><au>ZHONG YUAN</au><au>GE YI</au><au>DAI ZHEN</au><au>HUANG JIAXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>An underground early warning method based on a hidden Markov model</title><date>2019-06-18</date><risdate>2019</risdate><abstract>The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109902265A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title An underground early warning method based on a hidden Markov model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TONG%20XINGGE&rft.date=2019-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109902265A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true