An underground early warning method based on a hidden Markov model
The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an acc...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | TONG XINGGE XIE JING ZHENG JIN CHEN YAN ZHONG XUEYAN LI PING LIU YING ZHONG YUAN GE YI DAI ZHEN HUANG JIAXIN |
description | The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109902265A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109902265A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109902265A3</originalsourceid><addsrcrecordid>eNrjZHByzFMozUtJLUovygfSCqmJRTmVCuWJRXmZeekKuaklGfkpCkmJxakpCvl5CokKGZkpKal5Cr6JRdn5ZQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DA0tLAyMjM1NGYGDUACAQxhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>An underground early warning method based on a hidden Markov model</title><source>esp@cenet</source><creator>TONG XINGGE ; XIE JING ; ZHENG JIN ; CHEN YAN ; ZHONG XUEYAN ; LI PING ; LIU YING ; ZHONG YUAN ; GE YI ; DAI ZHEN ; HUANG JIAXIN</creator><creatorcontrib>TONG XINGGE ; XIE JING ; ZHENG JIN ; CHEN YAN ; ZHONG XUEYAN ; LI PING ; LIU YING ; ZHONG YUAN ; GE YI ; DAI ZHEN ; HUANG JIAXIN</creatorcontrib><description>The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190618&DB=EPODOC&CC=CN&NR=109902265A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190618&DB=EPODOC&CC=CN&NR=109902265A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>TONG XINGGE</creatorcontrib><creatorcontrib>XIE JING</creatorcontrib><creatorcontrib>ZHENG JIN</creatorcontrib><creatorcontrib>CHEN YAN</creatorcontrib><creatorcontrib>ZHONG XUEYAN</creatorcontrib><creatorcontrib>LI PING</creatorcontrib><creatorcontrib>LIU YING</creatorcontrib><creatorcontrib>ZHONG YUAN</creatorcontrib><creatorcontrib>GE YI</creatorcontrib><creatorcontrib>DAI ZHEN</creatorcontrib><creatorcontrib>HUANG JIAXIN</creatorcontrib><title>An underground early warning method based on a hidden Markov model</title><description>The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHByzFMozUtJLUovygfSCqmJRTmVCuWJRXmZeekKuaklGfkpCkmJxakpCvl5CokKGZkpKal5Cr6JRdn5ZQq5-SmpOTwMrGmJOcWpvFCam0HRzTXE2UM3tSA_PrW4IDE5NS-1JN7Zz9DA0tLAyMjM1NGYGDUACAQxhw</recordid><startdate>20190618</startdate><enddate>20190618</enddate><creator>TONG XINGGE</creator><creator>XIE JING</creator><creator>ZHENG JIN</creator><creator>CHEN YAN</creator><creator>ZHONG XUEYAN</creator><creator>LI PING</creator><creator>LIU YING</creator><creator>ZHONG YUAN</creator><creator>GE YI</creator><creator>DAI ZHEN</creator><creator>HUANG JIAXIN</creator><scope>EVB</scope></search><sort><creationdate>20190618</creationdate><title>An underground early warning method based on a hidden Markov model</title><author>TONG XINGGE ; XIE JING ; ZHENG JIN ; CHEN YAN ; ZHONG XUEYAN ; LI PING ; LIU YING ; ZHONG YUAN ; GE YI ; DAI ZHEN ; HUANG JIAXIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109902265A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>TONG XINGGE</creatorcontrib><creatorcontrib>XIE JING</creatorcontrib><creatorcontrib>ZHENG JIN</creatorcontrib><creatorcontrib>CHEN YAN</creatorcontrib><creatorcontrib>ZHONG XUEYAN</creatorcontrib><creatorcontrib>LI PING</creatorcontrib><creatorcontrib>LIU YING</creatorcontrib><creatorcontrib>ZHONG YUAN</creatorcontrib><creatorcontrib>GE YI</creatorcontrib><creatorcontrib>DAI ZHEN</creatorcontrib><creatorcontrib>HUANG JIAXIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>TONG XINGGE</au><au>XIE JING</au><au>ZHENG JIN</au><au>CHEN YAN</au><au>ZHONG XUEYAN</au><au>LI PING</au><au>LIU YING</au><au>ZHONG YUAN</au><au>GE YI</au><au>DAI ZHEN</au><au>HUANG JIAXIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>An underground early warning method based on a hidden Markov model</title><date>2019-06-18</date><risdate>2019</risdate><abstract>The invention discloses an underground early warning method based on a hidden Markov model. The underground early warning method comprises the following steps: S1, obtaining initial sample data; S2, predicting data of a next time period; S3, selecting real data and bringing the real data into an accident candidate set; S4, acquiring a real accident state corresponding to the real data in each timeperiod; S5, obtaining a real accident state sequence corresponding to the initial sample data; S6, establishing an initial early warning model by adopting the hidden Markov model, and training the initial early warning model to obtain a trained early warning model; And S7, obtaining data generated by the target drilling well in real time, taking the data as input of a post-training early warningmodel, and carrying out real-time early warning through the post-training early warning model. According to the method, the comprehensiveness of underground prediction can be effectively improved, sothat the prediction result</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN109902265A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | An underground early warning method based on a hidden Markov model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=TONG%20XINGGE&rft.date=2019-06-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109902265A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |