Roller compacted concrete compaction degree evaluation method based on GA-BP network
The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber san...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | ZHANG JUHUI FAN DAOLIN YE JINGSONG CHEN DAN ZHENG XIANG TIAN ZHENGHONG MA YUANSHAN XIANG JIAN MI YUANTAO |
description | The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109783988A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109783988A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109783988A3</originalsourceid><addsrcrecordid>eNrjZAgJys_JSS1SSM7PLUhMLklNAbLykotSS1JhQpn5eQopqelFqakKqWWJOaWJYJHc1JKM_BSFpMRioBYg391R1ylAIS-1pDy_KJuHgTUtMac4lRdKczMourmGOHvophbkx6cWA01NBaqMd_YzNLA0tzC2tLBwNCZGDQCJ-DiX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><source>esp@cenet</source><creator>ZHANG JUHUI ; FAN DAOLIN ; YE JINGSONG ; CHEN DAN ; ZHENG XIANG ; TIAN ZHENGHONG ; MA YUANSHAN ; XIANG JIAN ; MI YUANTAO</creator><creatorcontrib>ZHANG JUHUI ; FAN DAOLIN ; YE JINGSONG ; CHEN DAN ; ZHENG XIANG ; TIAN ZHENGHONG ; MA YUANSHAN ; XIANG JIAN ; MI YUANTAO</creatorcontrib><description>The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190521&DB=EPODOC&CC=CN&NR=109783988A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190521&DB=EPODOC&CC=CN&NR=109783988A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG JUHUI</creatorcontrib><creatorcontrib>FAN DAOLIN</creatorcontrib><creatorcontrib>YE JINGSONG</creatorcontrib><creatorcontrib>CHEN DAN</creatorcontrib><creatorcontrib>ZHENG XIANG</creatorcontrib><creatorcontrib>TIAN ZHENGHONG</creatorcontrib><creatorcontrib>MA YUANSHAN</creatorcontrib><creatorcontrib>XIANG JIAN</creatorcontrib><creatorcontrib>MI YUANTAO</creatorcontrib><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><description>The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgJys_JSS1SSM7PLUhMLklNAbLykotSS1JhQpn5eQopqelFqakKqWWJOaWJYJHc1JKM_BSFpMRioBYg391R1ylAIS-1pDy_KJuHgTUtMac4lRdKczMourmGOHvophbkx6cWA01NBaqMd_YzNLA0tzC2tLBwNCZGDQCJ-DiX</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>ZHANG JUHUI</creator><creator>FAN DAOLIN</creator><creator>YE JINGSONG</creator><creator>CHEN DAN</creator><creator>ZHENG XIANG</creator><creator>TIAN ZHENGHONG</creator><creator>MA YUANSHAN</creator><creator>XIANG JIAN</creator><creator>MI YUANTAO</creator><scope>EVB</scope></search><sort><creationdate>20190521</creationdate><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><author>ZHANG JUHUI ; FAN DAOLIN ; YE JINGSONG ; CHEN DAN ; ZHENG XIANG ; TIAN ZHENGHONG ; MA YUANSHAN ; XIANG JIAN ; MI YUANTAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109783988A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG JUHUI</creatorcontrib><creatorcontrib>FAN DAOLIN</creatorcontrib><creatorcontrib>YE JINGSONG</creatorcontrib><creatorcontrib>CHEN DAN</creatorcontrib><creatorcontrib>ZHENG XIANG</creatorcontrib><creatorcontrib>TIAN ZHENGHONG</creatorcontrib><creatorcontrib>MA YUANSHAN</creatorcontrib><creatorcontrib>XIANG JIAN</creatorcontrib><creatorcontrib>MI YUANTAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG JUHUI</au><au>FAN DAOLIN</au><au>YE JINGSONG</au><au>CHEN DAN</au><au>ZHENG XIANG</au><au>TIAN ZHENGHONG</au><au>MA YUANSHAN</au><au>XIANG JIAN</au><au>MI YUANTAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><date>2019-05-21</date><risdate>2019</risdate><abstract>The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN109783988A |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Roller compacted concrete compaction degree evaluation method based on GA-BP network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20JUHUI&rft.date=2019-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109783988A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |