Roller compacted concrete compaction degree evaluation method based on GA-BP network

The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber san...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG JUHUI, FAN DAOLIN, YE JINGSONG, CHEN DAN, ZHENG XIANG, TIAN ZHENGHONG, MA YUANSHAN, XIANG JIAN, MI YUANTAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG JUHUI
FAN DAOLIN
YE JINGSONG
CHEN DAN
ZHENG XIANG
TIAN ZHENGHONG
MA YUANSHAN
XIANG JIAN
MI YUANTAO
description The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109783988A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109783988A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109783988A3</originalsourceid><addsrcrecordid>eNrjZAgJys_JSS1SSM7PLUhMLklNAbLykotSS1JhQpn5eQopqelFqakKqWWJOaWJYJHc1JKM_BSFpMRioBYg391R1ylAIS-1pDy_KJuHgTUtMac4lRdKczMourmGOHvophbkx6cWA01NBaqMd_YzNLA0tzC2tLBwNCZGDQCJ-DiX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><source>esp@cenet</source><creator>ZHANG JUHUI ; FAN DAOLIN ; YE JINGSONG ; CHEN DAN ; ZHENG XIANG ; TIAN ZHENGHONG ; MA YUANSHAN ; XIANG JIAN ; MI YUANTAO</creator><creatorcontrib>ZHANG JUHUI ; FAN DAOLIN ; YE JINGSONG ; CHEN DAN ; ZHENG XIANG ; TIAN ZHENGHONG ; MA YUANSHAN ; XIANG JIAN ; MI YUANTAO</creatorcontrib><description>The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190521&amp;DB=EPODOC&amp;CC=CN&amp;NR=109783988A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190521&amp;DB=EPODOC&amp;CC=CN&amp;NR=109783988A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG JUHUI</creatorcontrib><creatorcontrib>FAN DAOLIN</creatorcontrib><creatorcontrib>YE JINGSONG</creatorcontrib><creatorcontrib>CHEN DAN</creatorcontrib><creatorcontrib>ZHENG XIANG</creatorcontrib><creatorcontrib>TIAN ZHENGHONG</creatorcontrib><creatorcontrib>MA YUANSHAN</creatorcontrib><creatorcontrib>XIANG JIAN</creatorcontrib><creatorcontrib>MI YUANTAO</creatorcontrib><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><description>The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZAgJys_JSS1SSM7PLUhMLklNAbLykotSS1JhQpn5eQopqelFqakKqWWJOaWJYJHc1JKM_BSFpMRioBYg391R1ylAIS-1pDy_KJuHgTUtMac4lRdKczMourmGOHvophbkx6cWA01NBaqMd_YzNLA0tzC2tLBwNCZGDQCJ-DiX</recordid><startdate>20190521</startdate><enddate>20190521</enddate><creator>ZHANG JUHUI</creator><creator>FAN DAOLIN</creator><creator>YE JINGSONG</creator><creator>CHEN DAN</creator><creator>ZHENG XIANG</creator><creator>TIAN ZHENGHONG</creator><creator>MA YUANSHAN</creator><creator>XIANG JIAN</creator><creator>MI YUANTAO</creator><scope>EVB</scope></search><sort><creationdate>20190521</creationdate><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><author>ZHANG JUHUI ; FAN DAOLIN ; YE JINGSONG ; CHEN DAN ; ZHENG XIANG ; TIAN ZHENGHONG ; MA YUANSHAN ; XIANG JIAN ; MI YUANTAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109783988A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG JUHUI</creatorcontrib><creatorcontrib>FAN DAOLIN</creatorcontrib><creatorcontrib>YE JINGSONG</creatorcontrib><creatorcontrib>CHEN DAN</creatorcontrib><creatorcontrib>ZHENG XIANG</creatorcontrib><creatorcontrib>TIAN ZHENGHONG</creatorcontrib><creatorcontrib>MA YUANSHAN</creatorcontrib><creatorcontrib>XIANG JIAN</creatorcontrib><creatorcontrib>MI YUANTAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG JUHUI</au><au>FAN DAOLIN</au><au>YE JINGSONG</au><au>CHEN DAN</au><au>ZHENG XIANG</au><au>TIAN ZHENGHONG</au><au>MA YUANSHAN</au><au>XIANG JIAN</au><au>MI YUANTAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Roller compacted concrete compaction degree evaluation method based on GA-BP network</title><date>2019-05-21</date><risdate>2019</risdate><abstract>The invention discloses a roller compacted concrete compaction degree evaluation method based on a GA-BP network. The method comprises the following steps: selecting the moisture content, the rollinglayer surface stress transverse wave velocity, the rolling material grading factor and the rubber sand ratio of a rolling material at each measuring point of a construction site as input index parameters of a real-time evaluation model; Determining a neural network structure of the compaction degree real-time evaluation model; Optimizing an initial weight value and a threshold value by utilizing agenetic algorithm; Substituting the determined initial weight value and the threshold value into a BP neural network for fine tuning to establish an optimal neural network model; And performing real-time evaluation to obtain a compaction degree value. According to the method, BP neural network is adopted on the basis of the moisture content of the roller compaction material before concrete rolling compaction, the surface</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109783988A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Roller compacted concrete compaction degree evaluation method based on GA-BP network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20JUHUI&rft.date=2019-05-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109783988A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true