Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning

The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUI ZHENYANG, WANG LEYANG, LU TIEDING, NIE YUNJU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUI ZHENYANG
WANG LEYANG
LU TIEDING
NIE YUNJU
description The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109754020A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109754020A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109754020A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywEimZ8QJYr4VFT0kRU_goXjtex1BLfHBQegesXMvGn1ukTO3lBg64U6x9kQ3hJ1J5Y9DZAnGyoMfdRifU9DdmJrhxGOQuQ-IiU7glKJivUhXe6yTzkgjjbBkIOOvqTzavLQLmHx21m1PJ_uzbVG4BYp6A4e0ja3lTrsd1u1VsfNP84Xs0JDBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><source>esp@cenet</source><creator>HUI ZHENYANG ; WANG LEYANG ; LU TIEDING ; NIE YUNJU</creator><creatorcontrib>HUI ZHENYANG ; WANG LEYANG ; LU TIEDING ; NIE YUNJU</creatorcontrib><description>The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190514&amp;DB=EPODOC&amp;CC=CN&amp;NR=109754020A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76292</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190514&amp;DB=EPODOC&amp;CC=CN&amp;NR=109754020A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUI ZHENYANG</creatorcontrib><creatorcontrib>WANG LEYANG</creatorcontrib><creatorcontrib>LU TIEDING</creatorcontrib><creatorcontrib>NIE YUNJU</creatorcontrib><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><description>The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywEimZ8QJYr4VFT0kRU_goXjtex1BLfHBQegesXMvGn1ukTO3lBg64U6x9kQ3hJ1J5Y9DZAnGyoMfdRifU9DdmJrhxGOQuQ-IiU7glKJivUhXe6yTzkgjjbBkIOOvqTzavLQLmHx21m1PJ_uzbVG4BYp6A4e0ja3lTrsd1u1VsfNP84Xs0JDBA</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>HUI ZHENYANG</creator><creator>WANG LEYANG</creator><creator>LU TIEDING</creator><creator>NIE YUNJU</creator><scope>EVB</scope></search><sort><creationdate>20190514</creationdate><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><author>HUI ZHENYANG ; WANG LEYANG ; LU TIEDING ; NIE YUNJU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109754020A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUI ZHENYANG</creatorcontrib><creatorcontrib>WANG LEYANG</creatorcontrib><creatorcontrib>LU TIEDING</creatorcontrib><creatorcontrib>NIE YUNJU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUI ZHENYANG</au><au>WANG LEYANG</au><au>LU TIEDING</au><au>NIE YUNJU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><date>2019-05-14</date><risdate>2019</risdate><abstract>The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109754020A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUI%20ZHENYANG&rft.date=2019-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109754020A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true