Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning
The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoisi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HUI ZHENYANG WANG LEYANG LU TIEDING NIE YUNJU |
description | The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109754020A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109754020A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109754020A3</originalsourceid><addsrcrecordid>eNqNjDsOwjAQBdNQIOAOywEimZ8QJYr4VFT0kRU_goXjtex1BLfHBQegesXMvGn1ukTO3lBg64U6x9kQ3hJ1J5Y9DZAnGyoMfdRifU9DdmJrhxGOQuQ-IiU7glKJivUhXe6yTzkgjjbBkIOOvqTzavLQLmHx21m1PJ_uzbVG4BYp6A4e0ja3lTrsd1u1VsfNP84Xs0JDBA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><source>esp@cenet</source><creator>HUI ZHENYANG ; WANG LEYANG ; LU TIEDING ; NIE YUNJU</creator><creatorcontrib>HUI ZHENYANG ; WANG LEYANG ; LU TIEDING ; NIE YUNJU</creatorcontrib><description>The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190514&DB=EPODOC&CC=CN&NR=109754020A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76292</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20190514&DB=EPODOC&CC=CN&NR=109754020A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUI ZHENYANG</creatorcontrib><creatorcontrib>WANG LEYANG</creatorcontrib><creatorcontrib>LU TIEDING</creatorcontrib><creatorcontrib>NIE YUNJU</creatorcontrib><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><description>The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDsOwjAQBdNQIOAOywEimZ8QJYr4VFT0kRU_goXjtex1BLfHBQegesXMvGn1ukTO3lBg64U6x9kQ3hJ1J5Y9DZAnGyoMfdRifU9DdmJrhxGOQuQ-IiU7glKJivUhXe6yTzkgjjbBkIOOvqTzavLQLmHx21m1PJ_uzbVG4BYp6A4e0ja3lTrsd1u1VsfNP84Xs0JDBA</recordid><startdate>20190514</startdate><enddate>20190514</enddate><creator>HUI ZHENYANG</creator><creator>WANG LEYANG</creator><creator>LU TIEDING</creator><creator>NIE YUNJU</creator><scope>EVB</scope></search><sort><creationdate>20190514</creationdate><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><author>HUI ZHENYANG ; WANG LEYANG ; LU TIEDING ; NIE YUNJU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109754020A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUI ZHENYANG</creatorcontrib><creatorcontrib>WANG LEYANG</creatorcontrib><creatorcontrib>LU TIEDING</creatorcontrib><creatorcontrib>NIE YUNJU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUI ZHENYANG</au><au>WANG LEYANG</au><au>LU TIEDING</au><au>NIE YUNJU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning</title><date>2019-05-14</date><risdate>2019</risdate><abstract>The invention discloses a ground point cloud extraction method integrating a multi-level progressive strategy and unsupervised learning, and the method comprises the following steps: S1, converting point cloud into a depth image, and obtaining two-dimensional grid data; S2, adopting a median denoising method to remove noise data in the depth image; S3, setting a filtering window scale range, and carrying out size marking on the grid data by adopting morphological high-cap operation; S4, setting area and roughness constraint conditions, detecting the maximum building size, and determining an optimal filtering window at the same time; S5, calculating the gradient change of each local terrain region according to a morphological filtering result, and setting a filtering threshold as a linear function of the gradient change; and S6, filtering is carried out point by point according to the point primitives according to a self-adaptive changing filtering threshold value. According to the method, a multi-level progre</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN109754020A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Ground point cloud extraction method integrating multi-level progressive strategy and unsupervised learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUI%20ZHENYANG&rft.date=2019-05-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109754020A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |