A fault diagnosis method and system based on big data

The invention discloses a fault diagnosis method and system based on big data, and the method comprises the steps of collecting thehistorical fault parameters of equipment, carrying out the list coding, and obtaining the characteristic values of the fault parameters as training samples; detecting op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHOU LIANLING, WANG LI, TAN XIAODONG, SONG ZHENYU, LIAO LI, ZHANG JING, LIN QIUTONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHOU LIANLING
WANG LI
TAN XIAODONG
SONG ZHENYU
LIAO LI
ZHANG JING
LIN QIUTONG
description The invention discloses a fault diagnosis method and system based on big data, and the method comprises the steps of collecting thehistorical fault parameters of equipment, carrying out the list coding, and obtaining the characteristic values of the fault parameters as training samples; detecting operation state parameters of the equipment, and extracting characteristic parameter values of the detection parameters in a time sequence manner; performing aggregation processing on the characteristic parameter values under the multivariate time sequence through an aggregation algorithm, and takingthe characteristic parameter values as detection samples; establishing a fault infinite depth neural network; establishing an expected target quantity by taking a training sample as input, training the network, and determining connection weights and deviations among neurons in the network; after comparing the output quantity with the expected target quantity, determining the fault state of the equipment; and updating the
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109670584A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109670584A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109670584A3</originalsourceid><addsrcrecordid>eNrjZDB1VEhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSMxLUSiuLC5JzVVISixOTVHIz1NIykxXSEksSeRhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGlmbmBqYWJo7GxKgBAA8ZLGs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A fault diagnosis method and system based on big data</title><source>esp@cenet</source><creator>ZHOU LIANLING ; WANG LI ; TAN XIAODONG ; SONG ZHENYU ; LIAO LI ; ZHANG JING ; LIN QIUTONG</creator><creatorcontrib>ZHOU LIANLING ; WANG LI ; TAN XIAODONG ; SONG ZHENYU ; LIAO LI ; ZHANG JING ; LIN QIUTONG</creatorcontrib><description>The invention discloses a fault diagnosis method and system based on big data, and the method comprises the steps of collecting thehistorical fault parameters of equipment, carrying out the list coding, and obtaining the characteristic values of the fault parameters as training samples; detecting operation state parameters of the equipment, and extracting characteristic parameter values of the detection parameters in a time sequence manner; performing aggregation processing on the characteristic parameter values under the multivariate time sequence through an aggregation algorithm, and takingthe characteristic parameter values as detection samples; establishing a fault infinite depth neural network; establishing an expected target quantity by taking a training sample as input, training the network, and determining connection weights and deviations among neurons in the network; after comparing the output quantity with the expected target quantity, determining the fault state of the equipment; and updating the</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190423&amp;DB=EPODOC&amp;CC=CN&amp;NR=109670584A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76516</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190423&amp;DB=EPODOC&amp;CC=CN&amp;NR=109670584A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHOU LIANLING</creatorcontrib><creatorcontrib>WANG LI</creatorcontrib><creatorcontrib>TAN XIAODONG</creatorcontrib><creatorcontrib>SONG ZHENYU</creatorcontrib><creatorcontrib>LIAO LI</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><creatorcontrib>LIN QIUTONG</creatorcontrib><title>A fault diagnosis method and system based on big data</title><description>The invention discloses a fault diagnosis method and system based on big data, and the method comprises the steps of collecting thehistorical fault parameters of equipment, carrying out the list coding, and obtaining the characteristic values of the fault parameters as training samples; detecting operation state parameters of the equipment, and extracting characteristic parameter values of the detection parameters in a time sequence manner; performing aggregation processing on the characteristic parameter values under the multivariate time sequence through an aggregation algorithm, and takingthe characteristic parameter values as detection samples; establishing a fault infinite depth neural network; establishing an expected target quantity by taking a training sample as input, training the network, and determining connection weights and deviations among neurons in the network; after comparing the output quantity with the expected target quantity, determining the fault state of the equipment; and updating the</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB1VEhLLM0pUUjJTEzPyy_OLFbITS3JyE9RSMxLUSiuLC5JzVVISixOTVHIz1NIykxXSEksSeRhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGlmbmBqYWJo7GxKgBAA8ZLGs</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>ZHOU LIANLING</creator><creator>WANG LI</creator><creator>TAN XIAODONG</creator><creator>SONG ZHENYU</creator><creator>LIAO LI</creator><creator>ZHANG JING</creator><creator>LIN QIUTONG</creator><scope>EVB</scope></search><sort><creationdate>20190423</creationdate><title>A fault diagnosis method and system based on big data</title><author>ZHOU LIANLING ; WANG LI ; TAN XIAODONG ; SONG ZHENYU ; LIAO LI ; ZHANG JING ; LIN QIUTONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109670584A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHOU LIANLING</creatorcontrib><creatorcontrib>WANG LI</creatorcontrib><creatorcontrib>TAN XIAODONG</creatorcontrib><creatorcontrib>SONG ZHENYU</creatorcontrib><creatorcontrib>LIAO LI</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><creatorcontrib>LIN QIUTONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHOU LIANLING</au><au>WANG LI</au><au>TAN XIAODONG</au><au>SONG ZHENYU</au><au>LIAO LI</au><au>ZHANG JING</au><au>LIN QIUTONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A fault diagnosis method and system based on big data</title><date>2019-04-23</date><risdate>2019</risdate><abstract>The invention discloses a fault diagnosis method and system based on big data, and the method comprises the steps of collecting thehistorical fault parameters of equipment, carrying out the list coding, and obtaining the characteristic values of the fault parameters as training samples; detecting operation state parameters of the equipment, and extracting characteristic parameter values of the detection parameters in a time sequence manner; performing aggregation processing on the characteristic parameter values under the multivariate time sequence through an aggregation algorithm, and takingthe characteristic parameter values as detection samples; establishing a fault infinite depth neural network; establishing an expected target quantity by taking a training sample as input, training the network, and determining connection weights and deviations among neurons in the network; after comparing the output quantity with the expected target quantity, determining the fault state of the equipment; and updating the</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109670584A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title A fault diagnosis method and system based on big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A26%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHOU%20LIANLING&rft.date=2019-04-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109670584A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true