A three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation

The invention discloses a three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation, and the method comprises the steps of firstly, obtaining a rough and initial conversion relation through a weighted PCA algorithm, and achieving the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN LEI, LI BING, GAO FEI, WEI XIANG, ZHAO ZHUO, XIN MEITING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN LEI
LI BING
GAO FEI
WEI XIANG
ZHAO ZHUO
XIN MEITING
description The invention discloses a three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation, and the method comprises the steps of firstly, obtaining a rough and initial conversion relation through a weighted PCA algorithm, and achieving the rough registration of an original point cloud and a target point cloud; then, in order to quickly obtain an accurate rotation translation matrix, using the BP neural network and the two-dimensional moving window for simplifying the number of point clouds of the rotation translation matrix; and finally, adopting a Cauchy function with resistance to noise as an objective function, calculating an accurate alignment relation according to an ICP algorithm, and realizing the accurate registration. According to the method, the time, the space complexity and the algorithm complexity of the registration algorithm can be effectively reduced, and an accurate conversion relation can be obtained for the original point cloud cont
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109559338A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109559338A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109559338A3</originalsourceid><addsrcrecordid>eNqNjL0KwkAQhNNYiPoO6wMElBAwZQiKjVb2Yb1bk4XcD7crIvjwHqK91fAxM9-8eLWgYyIqLTvywsHjBDGwVzBTuFtINLBoQs0VONIxWLiikIXMCA_iYdRMMbE3HPPbBBeDp2zALHsKy--H3sIJSJTdx7csZjechFbfXBTrw_7SHUuKoSeJaMiT9t15u2nquqmqXVv9s3kDKVxINA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation</title><source>esp@cenet</source><creator>CHEN LEI ; LI BING ; GAO FEI ; WEI XIANG ; ZHAO ZHUO ; XIN MEITING</creator><creatorcontrib>CHEN LEI ; LI BING ; GAO FEI ; WEI XIANG ; ZHAO ZHUO ; XIN MEITING</creatorcontrib><description>The invention discloses a three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation, and the method comprises the steps of firstly, obtaining a rough and initial conversion relation through a weighted PCA algorithm, and achieving the rough registration of an original point cloud and a target point cloud; then, in order to quickly obtain an accurate rotation translation matrix, using the BP neural network and the two-dimensional moving window for simplifying the number of point clouds of the rotation translation matrix; and finally, adopting a Cauchy function with resistance to noise as an objective function, calculating an accurate alignment relation according to an ICP algorithm, and realizing the accurate registration. According to the method, the time, the space complexity and the algorithm complexity of the registration algorithm can be effectively reduced, and an accurate conversion relation can be obtained for the original point cloud cont</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190402&amp;DB=EPODOC&amp;CC=CN&amp;NR=109559338A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190402&amp;DB=EPODOC&amp;CC=CN&amp;NR=109559338A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN LEI</creatorcontrib><creatorcontrib>LI BING</creatorcontrib><creatorcontrib>GAO FEI</creatorcontrib><creatorcontrib>WEI XIANG</creatorcontrib><creatorcontrib>ZHAO ZHUO</creatorcontrib><creatorcontrib>XIN MEITING</creatorcontrib><title>A three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation</title><description>The invention discloses a three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation, and the method comprises the steps of firstly, obtaining a rough and initial conversion relation through a weighted PCA algorithm, and achieving the rough registration of an original point cloud and a target point cloud; then, in order to quickly obtain an accurate rotation translation matrix, using the BP neural network and the two-dimensional moving window for simplifying the number of point clouds of the rotation translation matrix; and finally, adopting a Cauchy function with resistance to noise as an objective function, calculating an accurate alignment relation according to an ICP algorithm, and realizing the accurate registration. According to the method, the time, the space complexity and the algorithm complexity of the registration algorithm can be effectively reduced, and an accurate conversion relation can be obtained for the original point cloud cont</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjL0KwkAQhNNYiPoO6wMElBAwZQiKjVb2Yb1bk4XcD7crIvjwHqK91fAxM9-8eLWgYyIqLTvywsHjBDGwVzBTuFtINLBoQs0VONIxWLiikIXMCA_iYdRMMbE3HPPbBBeDp2zALHsKy--H3sIJSJTdx7csZjechFbfXBTrw_7SHUuKoSeJaMiT9t15u2nquqmqXVv9s3kDKVxINA</recordid><startdate>20190402</startdate><enddate>20190402</enddate><creator>CHEN LEI</creator><creator>LI BING</creator><creator>GAO FEI</creator><creator>WEI XIANG</creator><creator>ZHAO ZHUO</creator><creator>XIN MEITING</creator><scope>EVB</scope></search><sort><creationdate>20190402</creationdate><title>A three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation</title><author>CHEN LEI ; LI BING ; GAO FEI ; WEI XIANG ; ZHAO ZHUO ; XIN MEITING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109559338A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN LEI</creatorcontrib><creatorcontrib>LI BING</creatorcontrib><creatorcontrib>GAO FEI</creatorcontrib><creatorcontrib>WEI XIANG</creatorcontrib><creatorcontrib>ZHAO ZHUO</creatorcontrib><creatorcontrib>XIN MEITING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN LEI</au><au>LI BING</au><au>GAO FEI</au><au>WEI XIANG</au><au>ZHAO ZHUO</au><au>XIN MEITING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation</title><date>2019-04-02</date><risdate>2019</risdate><abstract>The invention discloses a three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation, and the method comprises the steps of firstly, obtaining a rough and initial conversion relation through a weighted PCA algorithm, and achieving the rough registration of an original point cloud and a target point cloud; then, in order to quickly obtain an accurate rotation translation matrix, using the BP neural network and the two-dimensional moving window for simplifying the number of point clouds of the rotation translation matrix; and finally, adopting a Cauchy function with resistance to noise as an objective function, calculating an accurate alignment relation according to an ICP algorithm, and realizing the accurate registration. According to the method, the time, the space complexity and the algorithm complexity of the registration algorithm can be effectively reduced, and an accurate conversion relation can be obtained for the original point cloud cont</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109559338A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title A three-dimensional point cloud registration method based on a weighted principal component analysis method and M estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20LEI&rft.date=2019-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109559338A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true