GIS partial discharge fault detection method based on improved wavelet threshold denoising

The invention discloses a GIS partial discharge fault detection method based on improved wavelet threshold denoising. The method of the invention comprises the following steps of: performing wavelet transform on data detected by an ultrahigh frequency sensor, and performing 4 level decomposition on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU JIANGMING, SUN ZHENGZHU, HUANG JILAI, XIA XIAOBO, WU XUYANG, MAO YONGMING, ZHOU XUN, SHENG JUN, WANG ZHENYI, ZHU LIANG, MA TAO, XU CHONG, WU ZUNDONG, WANG YIFAN, DU YUN, RAO HAIWEI, GONG JINLONG, LOU GANG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU JIANGMING
SUN ZHENGZHU
HUANG JILAI
XIA XIAOBO
WU XUYANG
MAO YONGMING
ZHOU XUN
SHENG JUN
WANG ZHENYI
ZHU LIANG
MA TAO
XU CHONG
WU ZUNDONG
WANG YIFAN
DU YUN
RAO HAIWEI
GONG JINLONG
LOU GANG
description The invention discloses a GIS partial discharge fault detection method based on improved wavelet threshold denoising. The method of the invention comprises the following steps of: performing wavelet transform on data detected by an ultrahigh frequency sensor, and performing 4 level decomposition on detection data of the sensor by using a dB4 mother wavelet to obtain wavelet coefficients at different scales; after the wavelet decomposition coefficient threshold is quantized and the threshold is selected, removing the wavelet coefficients smaller than the threshold, and performing threshold function process on wavelet coefficients larger than the threshold, thereby obtaining each level coefficients after the threshold function process; and performing signal reconstruction on each wavelet level coefficient by wavelet inverse transform to realize wavelet denoising. Compared with a traditional soft and hard threshold denoising algorithm, the GIS partial discharge fault detection method based on the improved wavele
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109557429A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109557429A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109557429A3</originalsourceid><addsrcrecordid>eNqNizsOwjAQBdNQIOAOywGQ-EVRShTxa2igoomW-CW25NiWvYTrk4IDUL0Zad40e56vdwocxbAlZVKjOXaglt9WSEHQiPGOeoj2il6coGh004foh5E_PMBCSHRE0t6q8eS8ScZ182zSsk1Y_HaWLU_HR3VZIfgaKXADB6mr22Zd5nmx35aH3T_NFyc7O1I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GIS partial discharge fault detection method based on improved wavelet threshold denoising</title><source>esp@cenet</source><creator>LIU JIANGMING ; SUN ZHENGZHU ; HUANG JILAI ; XIA XIAOBO ; WU XUYANG ; MAO YONGMING ; ZHOU XUN ; SHENG JUN ; WANG ZHENYI ; ZHU LIANG ; MA TAO ; XU CHONG ; WU ZUNDONG ; WANG YIFAN ; DU YUN ; RAO HAIWEI ; GONG JINLONG ; LOU GANG</creator><creatorcontrib>LIU JIANGMING ; SUN ZHENGZHU ; HUANG JILAI ; XIA XIAOBO ; WU XUYANG ; MAO YONGMING ; ZHOU XUN ; SHENG JUN ; WANG ZHENYI ; ZHU LIANG ; MA TAO ; XU CHONG ; WU ZUNDONG ; WANG YIFAN ; DU YUN ; RAO HAIWEI ; GONG JINLONG ; LOU GANG</creatorcontrib><description>The invention discloses a GIS partial discharge fault detection method based on improved wavelet threshold denoising. The method of the invention comprises the following steps of: performing wavelet transform on data detected by an ultrahigh frequency sensor, and performing 4 level decomposition on detection data of the sensor by using a dB4 mother wavelet to obtain wavelet coefficients at different scales; after the wavelet decomposition coefficient threshold is quantized and the threshold is selected, removing the wavelet coefficients smaller than the threshold, and performing threshold function process on wavelet coefficients larger than the threshold, thereby obtaining each level coefficients after the threshold function process; and performing signal reconstruction on each wavelet level coefficient by wavelet inverse transform to realize wavelet denoising. Compared with a traditional soft and hard threshold denoising algorithm, the GIS partial discharge fault detection method based on the improved wavele</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190402&amp;DB=EPODOC&amp;CC=CN&amp;NR=109557429A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190402&amp;DB=EPODOC&amp;CC=CN&amp;NR=109557429A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIANGMING</creatorcontrib><creatorcontrib>SUN ZHENGZHU</creatorcontrib><creatorcontrib>HUANG JILAI</creatorcontrib><creatorcontrib>XIA XIAOBO</creatorcontrib><creatorcontrib>WU XUYANG</creatorcontrib><creatorcontrib>MAO YONGMING</creatorcontrib><creatorcontrib>ZHOU XUN</creatorcontrib><creatorcontrib>SHENG JUN</creatorcontrib><creatorcontrib>WANG ZHENYI</creatorcontrib><creatorcontrib>ZHU LIANG</creatorcontrib><creatorcontrib>MA TAO</creatorcontrib><creatorcontrib>XU CHONG</creatorcontrib><creatorcontrib>WU ZUNDONG</creatorcontrib><creatorcontrib>WANG YIFAN</creatorcontrib><creatorcontrib>DU YUN</creatorcontrib><creatorcontrib>RAO HAIWEI</creatorcontrib><creatorcontrib>GONG JINLONG</creatorcontrib><creatorcontrib>LOU GANG</creatorcontrib><title>GIS partial discharge fault detection method based on improved wavelet threshold denoising</title><description>The invention discloses a GIS partial discharge fault detection method based on improved wavelet threshold denoising. The method of the invention comprises the following steps of: performing wavelet transform on data detected by an ultrahigh frequency sensor, and performing 4 level decomposition on detection data of the sensor by using a dB4 mother wavelet to obtain wavelet coefficients at different scales; after the wavelet decomposition coefficient threshold is quantized and the threshold is selected, removing the wavelet coefficients smaller than the threshold, and performing threshold function process on wavelet coefficients larger than the threshold, thereby obtaining each level coefficients after the threshold function process; and performing signal reconstruction on each wavelet level coefficient by wavelet inverse transform to realize wavelet denoising. Compared with a traditional soft and hard threshold denoising algorithm, the GIS partial discharge fault detection method based on the improved wavele</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAQBdNQIOAOywGQ-EVRShTxa2igoomW-CW25NiWvYTrk4IDUL0Zad40e56vdwocxbAlZVKjOXaglt9WSEHQiPGOeoj2il6coGh004foh5E_PMBCSHRE0t6q8eS8ScZ182zSsk1Y_HaWLU_HR3VZIfgaKXADB6mr22Zd5nmx35aH3T_NFyc7O1I</recordid><startdate>20190402</startdate><enddate>20190402</enddate><creator>LIU JIANGMING</creator><creator>SUN ZHENGZHU</creator><creator>HUANG JILAI</creator><creator>XIA XIAOBO</creator><creator>WU XUYANG</creator><creator>MAO YONGMING</creator><creator>ZHOU XUN</creator><creator>SHENG JUN</creator><creator>WANG ZHENYI</creator><creator>ZHU LIANG</creator><creator>MA TAO</creator><creator>XU CHONG</creator><creator>WU ZUNDONG</creator><creator>WANG YIFAN</creator><creator>DU YUN</creator><creator>RAO HAIWEI</creator><creator>GONG JINLONG</creator><creator>LOU GANG</creator><scope>EVB</scope></search><sort><creationdate>20190402</creationdate><title>GIS partial discharge fault detection method based on improved wavelet threshold denoising</title><author>LIU JIANGMING ; SUN ZHENGZHU ; HUANG JILAI ; XIA XIAOBO ; WU XUYANG ; MAO YONGMING ; ZHOU XUN ; SHENG JUN ; WANG ZHENYI ; ZHU LIANG ; MA TAO ; XU CHONG ; WU ZUNDONG ; WANG YIFAN ; DU YUN ; RAO HAIWEI ; GONG JINLONG ; LOU GANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109557429A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIANGMING</creatorcontrib><creatorcontrib>SUN ZHENGZHU</creatorcontrib><creatorcontrib>HUANG JILAI</creatorcontrib><creatorcontrib>XIA XIAOBO</creatorcontrib><creatorcontrib>WU XUYANG</creatorcontrib><creatorcontrib>MAO YONGMING</creatorcontrib><creatorcontrib>ZHOU XUN</creatorcontrib><creatorcontrib>SHENG JUN</creatorcontrib><creatorcontrib>WANG ZHENYI</creatorcontrib><creatorcontrib>ZHU LIANG</creatorcontrib><creatorcontrib>MA TAO</creatorcontrib><creatorcontrib>XU CHONG</creatorcontrib><creatorcontrib>WU ZUNDONG</creatorcontrib><creatorcontrib>WANG YIFAN</creatorcontrib><creatorcontrib>DU YUN</creatorcontrib><creatorcontrib>RAO HAIWEI</creatorcontrib><creatorcontrib>GONG JINLONG</creatorcontrib><creatorcontrib>LOU GANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIANGMING</au><au>SUN ZHENGZHU</au><au>HUANG JILAI</au><au>XIA XIAOBO</au><au>WU XUYANG</au><au>MAO YONGMING</au><au>ZHOU XUN</au><au>SHENG JUN</au><au>WANG ZHENYI</au><au>ZHU LIANG</au><au>MA TAO</au><au>XU CHONG</au><au>WU ZUNDONG</au><au>WANG YIFAN</au><au>DU YUN</au><au>RAO HAIWEI</au><au>GONG JINLONG</au><au>LOU GANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GIS partial discharge fault detection method based on improved wavelet threshold denoising</title><date>2019-04-02</date><risdate>2019</risdate><abstract>The invention discloses a GIS partial discharge fault detection method based on improved wavelet threshold denoising. The method of the invention comprises the following steps of: performing wavelet transform on data detected by an ultrahigh frequency sensor, and performing 4 level decomposition on detection data of the sensor by using a dB4 mother wavelet to obtain wavelet coefficients at different scales; after the wavelet decomposition coefficient threshold is quantized and the threshold is selected, removing the wavelet coefficients smaller than the threshold, and performing threshold function process on wavelet coefficients larger than the threshold, thereby obtaining each level coefficients after the threshold function process; and performing signal reconstruction on each wavelet level coefficient by wavelet inverse transform to realize wavelet denoising. Compared with a traditional soft and hard threshold denoising algorithm, the GIS partial discharge fault detection method based on the improved wavele</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109557429A
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title GIS partial discharge fault detection method based on improved wavelet threshold denoising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A57%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIANGMING&rft.date=2019-04-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109557429A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true