A method for forecasting the demand of emergency materials considering partial data ambiguity and missing

The invention discloses a method for constructing an emergency material demand forecasting model considering partial data fuzziness and missing and forecasting the emergency material demand based on the model, Aiming at the problem that the turning point of whitening weight function is difficult to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI BOQUAN, ZHANG MING, LIU SIHAN, QIU ZHIFENG, WU HANLIN, KONG XIANGLU, HUANG QIANWEN, ZHANG YIFAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI BOQUAN
ZHANG MING
LIU SIHAN
QIU ZHIFENG
WU HANLIN
KONG XIANGLU
HUANG QIANWEN
ZHANG YIFAN
description The invention discloses a method for constructing an emergency material demand forecasting model considering partial data fuzziness and missing and forecasting the emergency material demand based on the model, Aiming at the problem that the turning point of whitening weight function is difficult to determine the fuzzy data, Two formulas for calculating the 'kernel' of fuzzy interval grey numbers are presented, The obtained 'kernel' replaces the original fuzzy information to achieve the purpose of converting the uncertain information into definite information. Aiming at some missing data, an improved GKNN algorithm is proposed based on the combination of gray relational degree and K-nearest neighbor filling algorithm, in which weights are introduced in the filling part and logic checking conditions are added after filling. Then input the preprocessed data into the improved genetic algorithm optimized neural network model to get the trained emergency material demand forecasting model, and test the forecasting m
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN109472346A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN109472346A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN109472346A3</originalsourceid><addsrcrecordid>eNqNizEKwkAURNNYiHqH7wEENUGxDEGxsrIP391J8sHdDbvfIrd3Ax7AYhhmeG9ZSE0OOgRLXYhzYDip-J50AFk49pZCR3CIPbyZyLEiCr8TmeCT2DwyPXLUfJJlZWL3kv4jOtFsO0kpI-ti0WULm1-viu3t-mzuO4yhRRrZwEPb5nHYX6rzsaxOdfkP8wU7v0DK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A method for forecasting the demand of emergency materials considering partial data ambiguity and missing</title><source>esp@cenet</source><creator>LI BOQUAN ; ZHANG MING ; LIU SIHAN ; QIU ZHIFENG ; WU HANLIN ; KONG XIANGLU ; HUANG QIANWEN ; ZHANG YIFAN</creator><creatorcontrib>LI BOQUAN ; ZHANG MING ; LIU SIHAN ; QIU ZHIFENG ; WU HANLIN ; KONG XIANGLU ; HUANG QIANWEN ; ZHANG YIFAN</creatorcontrib><description>The invention discloses a method for constructing an emergency material demand forecasting model considering partial data fuzziness and missing and forecasting the emergency material demand based on the model, Aiming at the problem that the turning point of whitening weight function is difficult to determine the fuzzy data, Two formulas for calculating the 'kernel' of fuzzy interval grey numbers are presented, The obtained 'kernel' replaces the original fuzzy information to achieve the purpose of converting the uncertain information into definite information. Aiming at some missing data, an improved GKNN algorithm is proposed based on the combination of gray relational degree and K-nearest neighbor filling algorithm, in which weights are introduced in the filling part and logic checking conditions are added after filling. Then input the preprocessed data into the improved genetic algorithm optimized neural network model to get the trained emergency material demand forecasting model, and test the forecasting m</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2019</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190315&amp;DB=EPODOC&amp;CC=CN&amp;NR=109472346A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20190315&amp;DB=EPODOC&amp;CC=CN&amp;NR=109472346A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI BOQUAN</creatorcontrib><creatorcontrib>ZHANG MING</creatorcontrib><creatorcontrib>LIU SIHAN</creatorcontrib><creatorcontrib>QIU ZHIFENG</creatorcontrib><creatorcontrib>WU HANLIN</creatorcontrib><creatorcontrib>KONG XIANGLU</creatorcontrib><creatorcontrib>HUANG QIANWEN</creatorcontrib><creatorcontrib>ZHANG YIFAN</creatorcontrib><title>A method for forecasting the demand of emergency materials considering partial data ambiguity and missing</title><description>The invention discloses a method for constructing an emergency material demand forecasting model considering partial data fuzziness and missing and forecasting the emergency material demand based on the model, Aiming at the problem that the turning point of whitening weight function is difficult to determine the fuzzy data, Two formulas for calculating the 'kernel' of fuzzy interval grey numbers are presented, The obtained 'kernel' replaces the original fuzzy information to achieve the purpose of converting the uncertain information into definite information. Aiming at some missing data, an improved GKNN algorithm is proposed based on the combination of gray relational degree and K-nearest neighbor filling algorithm, in which weights are introduced in the filling part and logic checking conditions are added after filling. Then input the preprocessed data into the improved genetic algorithm optimized neural network model to get the trained emergency material demand forecasting model, and test the forecasting m</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2019</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEKwkAURNNYiHqH7wEENUGxDEGxsrIP391J8sHdDbvfIrd3Ax7AYhhmeG9ZSE0OOgRLXYhzYDip-J50AFk49pZCR3CIPbyZyLEiCr8TmeCT2DwyPXLUfJJlZWL3kv4jOtFsO0kpI-ti0WULm1-viu3t-mzuO4yhRRrZwEPb5nHYX6rzsaxOdfkP8wU7v0DK</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>LI BOQUAN</creator><creator>ZHANG MING</creator><creator>LIU SIHAN</creator><creator>QIU ZHIFENG</creator><creator>WU HANLIN</creator><creator>KONG XIANGLU</creator><creator>HUANG QIANWEN</creator><creator>ZHANG YIFAN</creator><scope>EVB</scope></search><sort><creationdate>20190315</creationdate><title>A method for forecasting the demand of emergency materials considering partial data ambiguity and missing</title><author>LI BOQUAN ; ZHANG MING ; LIU SIHAN ; QIU ZHIFENG ; WU HANLIN ; KONG XIANGLU ; HUANG QIANWEN ; ZHANG YIFAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN109472346A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2019</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LI BOQUAN</creatorcontrib><creatorcontrib>ZHANG MING</creatorcontrib><creatorcontrib>LIU SIHAN</creatorcontrib><creatorcontrib>QIU ZHIFENG</creatorcontrib><creatorcontrib>WU HANLIN</creatorcontrib><creatorcontrib>KONG XIANGLU</creatorcontrib><creatorcontrib>HUANG QIANWEN</creatorcontrib><creatorcontrib>ZHANG YIFAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI BOQUAN</au><au>ZHANG MING</au><au>LIU SIHAN</au><au>QIU ZHIFENG</au><au>WU HANLIN</au><au>KONG XIANGLU</au><au>HUANG QIANWEN</au><au>ZHANG YIFAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A method for forecasting the demand of emergency materials considering partial data ambiguity and missing</title><date>2019-03-15</date><risdate>2019</risdate><abstract>The invention discloses a method for constructing an emergency material demand forecasting model considering partial data fuzziness and missing and forecasting the emergency material demand based on the model, Aiming at the problem that the turning point of whitening weight function is difficult to determine the fuzzy data, Two formulas for calculating the 'kernel' of fuzzy interval grey numbers are presented, The obtained 'kernel' replaces the original fuzzy information to achieve the purpose of converting the uncertain information into definite information. Aiming at some missing data, an improved GKNN algorithm is proposed based on the combination of gray relational degree and K-nearest neighbor filling algorithm, in which weights are introduced in the filling part and logic checking conditions are added after filling. Then input the preprocessed data into the improved genetic algorithm optimized neural network model to get the trained emergency material demand forecasting model, and test the forecasting m</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN109472346A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title A method for forecasting the demand of emergency materials considering partial data ambiguity and missing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A21%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20BOQUAN&rft.date=2019-03-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN109472346A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true