A distance mapping pattern classification method
The invention relates to a distance mapping pattern classification method. The established distance mapping classifier comprises four parts, namely an input layer, a hidden layer 1, a hidden layer 2 and an output layer. The input layer comprises d neuron nodes, and each node represents a feature vec...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HOU HUIRANG MENG QINGHAO |
description | The invention relates to a distance mapping pattern classification method. The established distance mapping classifier comprises four parts, namely an input layer, a hidden layer 1, a hidden layer 2 and an output layer. The input layer comprises d neuron nodes, and each node represents a feature vector of a training or test sample. The feature vector set of the extracted samples is used as the input layer of the distance mapping classifier. The hidden layer 1 contains N neuron nodes, N representing the total number of training samples; and calculates the Euclidean distance between the input eigenvector and the eigenvectors of N training samples as the hidden layer 1. The hidden layer 2 consists of L neuron nodes. The hidden layer 1 and the hidden layer 2 can be connected by linear activation function. The two parameter matrices of the linear activation function are the connection weights and offsets of the hidden layer 1 and 2 respectively. When the classifier model is used to classifythe test samples, the ou |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108985315A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108985315A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108985315A3</originalsourceid><addsrcrecordid>eNrjZDBwVEjJLC5JzEtOVchNLCjIzEtXKEgsKUktylNIzkksLs5My0xOLMnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBhaWFqbGhqaOxsSoAQBuQCuK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>A distance mapping pattern classification method</title><source>esp@cenet</source><creator>HOU HUIRANG ; MENG QINGHAO</creator><creatorcontrib>HOU HUIRANG ; MENG QINGHAO</creatorcontrib><description>The invention relates to a distance mapping pattern classification method. The established distance mapping classifier comprises four parts, namely an input layer, a hidden layer 1, a hidden layer 2 and an output layer. The input layer comprises d neuron nodes, and each node represents a feature vector of a training or test sample. The feature vector set of the extracted samples is used as the input layer of the distance mapping classifier. The hidden layer 1 contains N neuron nodes, N representing the total number of training samples; and calculates the Euclidean distance between the input eigenvector and the eigenvectors of N training samples as the hidden layer 1. The hidden layer 2 consists of L neuron nodes. The hidden layer 1 and the hidden layer 2 can be connected by linear activation function. The two parameter matrices of the linear activation function are the connection weights and offsets of the hidden layer 1 and 2 respectively. When the classifier model is used to classifythe test samples, the ou</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181211&DB=EPODOC&CC=CN&NR=108985315A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20181211&DB=EPODOC&CC=CN&NR=108985315A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HOU HUIRANG</creatorcontrib><creatorcontrib>MENG QINGHAO</creatorcontrib><title>A distance mapping pattern classification method</title><description>The invention relates to a distance mapping pattern classification method. The established distance mapping classifier comprises four parts, namely an input layer, a hidden layer 1, a hidden layer 2 and an output layer. The input layer comprises d neuron nodes, and each node represents a feature vector of a training or test sample. The feature vector set of the extracted samples is used as the input layer of the distance mapping classifier. The hidden layer 1 contains N neuron nodes, N representing the total number of training samples; and calculates the Euclidean distance between the input eigenvector and the eigenvectors of N training samples as the hidden layer 1. The hidden layer 2 consists of L neuron nodes. The hidden layer 1 and the hidden layer 2 can be connected by linear activation function. The two parameter matrices of the linear activation function are the connection weights and offsets of the hidden layer 1 and 2 respectively. When the classifier model is used to classifythe test samples, the ou</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBwVEjJLC5JzEtOVchNLCjIzEtXKEgsKUktylNIzkksLs5My0xOLMnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBhaWFqbGhqaOxsSoAQBuQCuK</recordid><startdate>20181211</startdate><enddate>20181211</enddate><creator>HOU HUIRANG</creator><creator>MENG QINGHAO</creator><scope>EVB</scope></search><sort><creationdate>20181211</creationdate><title>A distance mapping pattern classification method</title><author>HOU HUIRANG ; MENG QINGHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108985315A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>HOU HUIRANG</creatorcontrib><creatorcontrib>MENG QINGHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HOU HUIRANG</au><au>MENG QINGHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>A distance mapping pattern classification method</title><date>2018-12-11</date><risdate>2018</risdate><abstract>The invention relates to a distance mapping pattern classification method. The established distance mapping classifier comprises four parts, namely an input layer, a hidden layer 1, a hidden layer 2 and an output layer. The input layer comprises d neuron nodes, and each node represents a feature vector of a training or test sample. The feature vector set of the extracted samples is used as the input layer of the distance mapping classifier. The hidden layer 1 contains N neuron nodes, N representing the total number of training samples; and calculates the Euclidean distance between the input eigenvector and the eigenvectors of N training samples as the hidden layer 1. The hidden layer 2 consists of L neuron nodes. The hidden layer 1 and the hidden layer 2 can be connected by linear activation function. The two parameter matrices of the linear activation function are the connection weights and offsets of the hidden layer 1 and 2 respectively. When the classifier model is used to classifythe test samples, the ou</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN108985315A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | A distance mapping pattern classification method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HOU%20HUIRANG&rft.date=2018-12-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108985315A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |