FpGrowth algorithm-based pruning strategy

An FpGrowth algorithm is an association rule mining algorithm which does not generate candidate sets, and has a wide practical application value. Through deeply analyzing and researching a structure and a mining process of an FP-tree of a classic FpGrowth algorithm, and analyzing a single-path minin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG WEI, LIU HAI, LI YUAN, WU ZHAOXIA, CHU ZENAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG WEI
LIU HAI
LI YUAN
WU ZHAOXIA
CHU ZENAN
description An FpGrowth algorithm is an association rule mining algorithm which does not generate candidate sets, and has a wide practical application value. Through deeply analyzing and researching a structure and a mining process of an FP-tree of a classic FpGrowth algorithm, and analyzing a single-path mining method and a multi-path mining method of the FP-tree, the invention discloses a pruning strategy which is capable of decreasing the iteration frequencies of a part of branches. Experiment results prove that the pruning strategy is capable of effectively improving the algorithm and improving the data processing ability and efficiency of the FpGrowth algorithm. FpGrowth算法是不产生候选集的关联规则挖掘算法,具有广泛的实际应用价值。为此对经典FpGrowth算法的FP-tree的结构和挖掘过程进行了深入分析和研究,分析了FP-tree单路径和多路径的挖掘方法,提出了个剪枝策略,在频繁模式挖掘时可以减少部分分支的迭代次数。实验结果验证提出的剪枝策略有效地改进了算法,并提高了FpGrowth算法对数据的处理能力和效率。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108875015A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108875015A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108875015A3</originalsourceid><addsrcrecordid>eNrjZNB0K3Avyi8vyVBIzEnPL8osycjVTUosTk1RKCgqzcvMS1coLilKLElNr-RhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGFhbmpgaGpo7GxKgBACbNKRA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FpGrowth algorithm-based pruning strategy</title><source>esp@cenet</source><creator>WANG WEI ; LIU HAI ; LI YUAN ; WU ZHAOXIA ; CHU ZENAN</creator><creatorcontrib>WANG WEI ; LIU HAI ; LI YUAN ; WU ZHAOXIA ; CHU ZENAN</creatorcontrib><description>An FpGrowth algorithm is an association rule mining algorithm which does not generate candidate sets, and has a wide practical application value. Through deeply analyzing and researching a structure and a mining process of an FP-tree of a classic FpGrowth algorithm, and analyzing a single-path mining method and a multi-path mining method of the FP-tree, the invention discloses a pruning strategy which is capable of decreasing the iteration frequencies of a part of branches. Experiment results prove that the pruning strategy is capable of effectively improving the algorithm and improving the data processing ability and efficiency of the FpGrowth algorithm. FpGrowth算法是不产生候选集的关联规则挖掘算法,具有广泛的实际应用价值。为此对经典FpGrowth算法的FP-tree的结构和挖掘过程进行了深入分析和研究,分析了FP-tree单路径和多路径的挖掘方法,提出了个剪枝策略,在频繁模式挖掘时可以减少部分分支的迭代次数。实验结果验证提出的剪枝策略有效地改进了算法,并提高了FpGrowth算法对数据的处理能力和效率。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181123&amp;DB=EPODOC&amp;CC=CN&amp;NR=108875015A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25571,76555</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181123&amp;DB=EPODOC&amp;CC=CN&amp;NR=108875015A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>LIU HAI</creatorcontrib><creatorcontrib>LI YUAN</creatorcontrib><creatorcontrib>WU ZHAOXIA</creatorcontrib><creatorcontrib>CHU ZENAN</creatorcontrib><title>FpGrowth algorithm-based pruning strategy</title><description>An FpGrowth algorithm is an association rule mining algorithm which does not generate candidate sets, and has a wide practical application value. Through deeply analyzing and researching a structure and a mining process of an FP-tree of a classic FpGrowth algorithm, and analyzing a single-path mining method and a multi-path mining method of the FP-tree, the invention discloses a pruning strategy which is capable of decreasing the iteration frequencies of a part of branches. Experiment results prove that the pruning strategy is capable of effectively improving the algorithm and improving the data processing ability and efficiency of the FpGrowth algorithm. FpGrowth算法是不产生候选集的关联规则挖掘算法,具有广泛的实际应用价值。为此对经典FpGrowth算法的FP-tree的结构和挖掘过程进行了深入分析和研究,分析了FP-tree单路径和多路径的挖掘方法,提出了个剪枝策略,在频繁模式挖掘时可以减少部分分支的迭代次数。实验结果验证提出的剪枝策略有效地改进了算法,并提高了FpGrowth算法对数据的处理能力和效率。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB0K3Avyi8vyVBIzEnPL8osycjVTUosTk1RKCgqzcvMS1coLilKLElNr-RhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGFhbmpgaGpo7GxKgBACbNKRA</recordid><startdate>20181123</startdate><enddate>20181123</enddate><creator>WANG WEI</creator><creator>LIU HAI</creator><creator>LI YUAN</creator><creator>WU ZHAOXIA</creator><creator>CHU ZENAN</creator><scope>EVB</scope></search><sort><creationdate>20181123</creationdate><title>FpGrowth algorithm-based pruning strategy</title><author>WANG WEI ; LIU HAI ; LI YUAN ; WU ZHAOXIA ; CHU ZENAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108875015A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>LIU HAI</creatorcontrib><creatorcontrib>LI YUAN</creatorcontrib><creatorcontrib>WU ZHAOXIA</creatorcontrib><creatorcontrib>CHU ZENAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG WEI</au><au>LIU HAI</au><au>LI YUAN</au><au>WU ZHAOXIA</au><au>CHU ZENAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FpGrowth algorithm-based pruning strategy</title><date>2018-11-23</date><risdate>2018</risdate><abstract>An FpGrowth algorithm is an association rule mining algorithm which does not generate candidate sets, and has a wide practical application value. Through deeply analyzing and researching a structure and a mining process of an FP-tree of a classic FpGrowth algorithm, and analyzing a single-path mining method and a multi-path mining method of the FP-tree, the invention discloses a pruning strategy which is capable of decreasing the iteration frequencies of a part of branches. Experiment results prove that the pruning strategy is capable of effectively improving the algorithm and improving the data processing ability and efficiency of the FpGrowth algorithm. FpGrowth算法是不产生候选集的关联规则挖掘算法,具有广泛的实际应用价值。为此对经典FpGrowth算法的FP-tree的结构和挖掘过程进行了深入分析和研究,分析了FP-tree单路径和多路径的挖掘方法,提出了个剪枝策略,在频繁模式挖掘时可以减少部分分支的迭代次数。实验结果验证提出的剪枝策略有效地改进了算法,并提高了FpGrowth算法对数据的处理能力和效率。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108875015A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title FpGrowth algorithm-based pruning strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T14%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20WEI&rft.date=2018-11-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108875015A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true