Cell neural network hot region fusion method based on wavelet transform

The invention discloses a cell neural network hot region fusion method based on wavelet transform. The method comprises a step of calculating uncorrelated hot region images by using different contrastfunctions by using an ICA algorithm to obtain various forms of hot region images, a step of extracti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YIN CHUN, HUANG XUEGANG, ZHANG HAONAN, GAN WENDONG, CHEN XIAOHUI, CHENG YUHUA, GONG DEXING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YIN CHUN
HUANG XUEGANG
ZHANG HAONAN
GAN WENDONG
CHEN XIAOHUI
CHENG YUHUA
GONG DEXING
description The invention discloses a cell neural network hot region fusion method based on wavelet transform. The method comprises a step of calculating uncorrelated hot region images by using different contrastfunctions by using an ICA algorithm to obtain various forms of hot region images, a step of extracting low-frequency hot region images from the various forms of hot region images by using the wavelettransform, and a step of fusing the low-frequency hot region images based on a cellular neural network. In this way, defect features in the images are enhanced, the edges and contours of thermal images are enhanced, and thus the visualization effect of defect detection is better and more accurate. 本发明公开了种基于小波变换的细胞神经网络热区域融合方法,先利用ICA算法,采取不同的对比函数计算不相关的热区域图像,得到多种形式的热区域图像,然后利用小波变换分别多种形式的热区域图像中提取出低频热区域图像,最后基于细胞神经网络对低频热区域图像进行融合,这样增强了图像中的缺陷特征,而且还增强了热图像的边缘与轮廓,使得缺陷检测的可视化效果更好和准确。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108846821A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108846821A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108846821A3</originalsourceid><addsrcrecordid>eNrjZHB3Ts3JUchLLS1KBFEl5flF2QoZ-SUKRanpmfl5CmmlxSAqN7UkIz9FISmxODVFAcgvTyxLzUktUSgpSswrTssvyuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqUDT4539DA0sLEzMLIwMHY2JUQMAc7A0Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cell neural network hot region fusion method based on wavelet transform</title><source>esp@cenet</source><creator>YIN CHUN ; HUANG XUEGANG ; ZHANG HAONAN ; GAN WENDONG ; CHEN XIAOHUI ; CHENG YUHUA ; GONG DEXING</creator><creatorcontrib>YIN CHUN ; HUANG XUEGANG ; ZHANG HAONAN ; GAN WENDONG ; CHEN XIAOHUI ; CHENG YUHUA ; GONG DEXING</creatorcontrib><description>The invention discloses a cell neural network hot region fusion method based on wavelet transform. The method comprises a step of calculating uncorrelated hot region images by using different contrastfunctions by using an ICA algorithm to obtain various forms of hot region images, a step of extracting low-frequency hot region images from the various forms of hot region images by using the wavelettransform, and a step of fusing the low-frequency hot region images based on a cellular neural network. In this way, defect features in the images are enhanced, the edges and contours of thermal images are enhanced, and thus the visualization effect of defect detection is better and more accurate. 本发明公开了种基于小波变换的细胞神经网络热区域融合方法,先利用ICA算法,采取不同的对比函数计算不相关的热区域图像,得到多种形式的热区域图像,然后利用小波变换分别多种形式的热区域图像中提取出低频热区域图像,最后基于细胞神经网络对低频热区域图像进行融合,这样增强了图像中的缺陷特征,而且还增强了热图像的边缘与轮廓,使得缺陷检测的可视化效果更好和准确。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181120&amp;DB=EPODOC&amp;CC=CN&amp;NR=108846821A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181120&amp;DB=EPODOC&amp;CC=CN&amp;NR=108846821A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YIN CHUN</creatorcontrib><creatorcontrib>HUANG XUEGANG</creatorcontrib><creatorcontrib>ZHANG HAONAN</creatorcontrib><creatorcontrib>GAN WENDONG</creatorcontrib><creatorcontrib>CHEN XIAOHUI</creatorcontrib><creatorcontrib>CHENG YUHUA</creatorcontrib><creatorcontrib>GONG DEXING</creatorcontrib><title>Cell neural network hot region fusion method based on wavelet transform</title><description>The invention discloses a cell neural network hot region fusion method based on wavelet transform. The method comprises a step of calculating uncorrelated hot region images by using different contrastfunctions by using an ICA algorithm to obtain various forms of hot region images, a step of extracting low-frequency hot region images from the various forms of hot region images by using the wavelettransform, and a step of fusing the low-frequency hot region images based on a cellular neural network. In this way, defect features in the images are enhanced, the edges and contours of thermal images are enhanced, and thus the visualization effect of defect detection is better and more accurate. 本发明公开了种基于小波变换的细胞神经网络热区域融合方法,先利用ICA算法,采取不同的对比函数计算不相关的热区域图像,得到多种形式的热区域图像,然后利用小波变换分别多种形式的热区域图像中提取出低频热区域图像,最后基于细胞神经网络对低频热区域图像进行融合,这样增强了图像中的缺陷特征,而且还增强了热图像的边缘与轮廓,使得缺陷检测的可视化效果更好和准确。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHB3Ts3JUchLLS1KBFEl5flF2QoZ-SUKRanpmfl5CmmlxSAqN7UkIz9FISmxODVFAcgvTyxLzUktUSgpSswrTssvyuVhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqUDT4539DA0sLEzMLIwMHY2JUQMAc7A0Hw</recordid><startdate>20181120</startdate><enddate>20181120</enddate><creator>YIN CHUN</creator><creator>HUANG XUEGANG</creator><creator>ZHANG HAONAN</creator><creator>GAN WENDONG</creator><creator>CHEN XIAOHUI</creator><creator>CHENG YUHUA</creator><creator>GONG DEXING</creator><scope>EVB</scope></search><sort><creationdate>20181120</creationdate><title>Cell neural network hot region fusion method based on wavelet transform</title><author>YIN CHUN ; HUANG XUEGANG ; ZHANG HAONAN ; GAN WENDONG ; CHEN XIAOHUI ; CHENG YUHUA ; GONG DEXING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108846821A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YIN CHUN</creatorcontrib><creatorcontrib>HUANG XUEGANG</creatorcontrib><creatorcontrib>ZHANG HAONAN</creatorcontrib><creatorcontrib>GAN WENDONG</creatorcontrib><creatorcontrib>CHEN XIAOHUI</creatorcontrib><creatorcontrib>CHENG YUHUA</creatorcontrib><creatorcontrib>GONG DEXING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YIN CHUN</au><au>HUANG XUEGANG</au><au>ZHANG HAONAN</au><au>GAN WENDONG</au><au>CHEN XIAOHUI</au><au>CHENG YUHUA</au><au>GONG DEXING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cell neural network hot region fusion method based on wavelet transform</title><date>2018-11-20</date><risdate>2018</risdate><abstract>The invention discloses a cell neural network hot region fusion method based on wavelet transform. The method comprises a step of calculating uncorrelated hot region images by using different contrastfunctions by using an ICA algorithm to obtain various forms of hot region images, a step of extracting low-frequency hot region images from the various forms of hot region images by using the wavelettransform, and a step of fusing the low-frequency hot region images based on a cellular neural network. In this way, defect features in the images are enhanced, the edges and contours of thermal images are enhanced, and thus the visualization effect of defect detection is better and more accurate. 本发明公开了种基于小波变换的细胞神经网络热区域融合方法,先利用ICA算法,采取不同的对比函数计算不相关的热区域图像,得到多种形式的热区域图像,然后利用小波变换分别多种形式的热区域图像中提取出低频热区域图像,最后基于细胞神经网络对低频热区域图像进行融合,这样增强了图像中的缺陷特征,而且还增强了热图像的边缘与轮廓,使得缺陷检测的可视化效果更好和准确。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108846821A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Cell neural network hot region fusion method based on wavelet transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YIN%20CHUN&rft.date=2018-11-20&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108846821A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true