Self-adaptive financial time sequence prediction method based on k-line clustering and reinforcement learning
The invention discloses a self-adaptive financial time sequence prediction method based on k-line clustering and reinforcement learning. The method comprises the following steps: firstly acquiring financial data, performing K linearization processing on the financial data, and computing the data aft...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invention discloses a self-adaptive financial time sequence prediction method based on k-line clustering and reinforcement learning. The method comprises the following steps: firstly acquiring financial data, performing K linearization processing on the financial data, and computing the data after the K linearization processing, thereby obtaining the K line data in the current matching period;clustering various sub-components of the K line by using the Kmeans clustering algorithm, the FCM clustering algorithm or the online clustering method based on the data density; inputting the clustering result in the deep reinforcement learning model to perform the parameter training, and performing the financial transaction by using the trained deep reinforcement learning. The K-linearization isperformed on the financial data, and various sub-parts of the K line are clustered, the clustering result is input into the deep reinforcement learning model to obtain the deep reinforcement learningmodel based on the decompo |
---|