Faster R-CNN-based human pose estimation method

The invention discloses a Faster R-CNN-based human pose estimation method. The method comprises the following steps of: inputting an image; classifying human parts; obtaining human pose image data andlabels; training a deep network Faster R-CNN model by using training set image data and labels; obta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAI HONGXIA, XING ZHIWEI, HE LIHUO, ZHONG YANZHE, WU TIANYAN, LU WEN, ZHANG YI, LI QIQI, GAO XINBO, DAI HUIBING
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAI HONGXIA
XING ZHIWEI
HE LIHUO
ZHONG YANZHE
WU TIANYAN
LU WEN
ZHANG YI
LI QIQI
GAO XINBO
DAI HUIBING
description The invention discloses a Faster R-CNN-based human pose estimation method. The method comprises the following steps of: inputting an image; classifying human parts; obtaining human pose image data andlabels; training a deep network Faster R-CNN model by using training set image data and labels; obtaining a rectangular detection box; determining human part positions in a space constraint relationship; determining joint point positions; and connecting and outputting joint points of adjacent human parts so as to obtain a pose of an upper body. According to the method, the human parts are dividedinto single parts and combined parts, Faster R-CNN is adopted, and position coordinates corresponding to necks are taken as standards, so that high-precision upper body pose estimation can be obtained under the interference of image backgrounds. The method has the advantages of carrying out robust, high-precision, wide application scene human pose estimation. 本发明公开种基于Faster-RCNN的人体姿态估计方法,其步骤为:输入图像;进行人体部件分类;获取人体姿态图像数据与标签;用
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108717531A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108717531A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108717531A3</originalsourceid><addsrcrecordid>eNrjZNB3SywuSS1SCNJ19vPTTUosTk1RyCjNTcxTKMgvTlVILS7JzE0syczPU8hNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGFuaG5qbGho7GxKgBAM5ZKjU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Faster R-CNN-based human pose estimation method</title><source>esp@cenet</source><creator>CAI HONGXIA ; XING ZHIWEI ; HE LIHUO ; ZHONG YANZHE ; WU TIANYAN ; LU WEN ; ZHANG YI ; LI QIQI ; GAO XINBO ; DAI HUIBING</creator><creatorcontrib>CAI HONGXIA ; XING ZHIWEI ; HE LIHUO ; ZHONG YANZHE ; WU TIANYAN ; LU WEN ; ZHANG YI ; LI QIQI ; GAO XINBO ; DAI HUIBING</creatorcontrib><description>The invention discloses a Faster R-CNN-based human pose estimation method. The method comprises the following steps of: inputting an image; classifying human parts; obtaining human pose image data andlabels; training a deep network Faster R-CNN model by using training set image data and labels; obtaining a rectangular detection box; determining human part positions in a space constraint relationship; determining joint point positions; and connecting and outputting joint points of adjacent human parts so as to obtain a pose of an upper body. According to the method, the human parts are dividedinto single parts and combined parts, Faster R-CNN is adopted, and position coordinates corresponding to necks are taken as standards, so that high-precision upper body pose estimation can be obtained under the interference of image backgrounds. The method has the advantages of carrying out robust, high-precision, wide application scene human pose estimation. 本发明公开种基于Faster-RCNN的人体姿态估计方法,其步骤为:输入图像;进行人体部件分类;获取人体姿态图像数据与标签;用</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181030&amp;DB=EPODOC&amp;CC=CN&amp;NR=108717531A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181030&amp;DB=EPODOC&amp;CC=CN&amp;NR=108717531A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAI HONGXIA</creatorcontrib><creatorcontrib>XING ZHIWEI</creatorcontrib><creatorcontrib>HE LIHUO</creatorcontrib><creatorcontrib>ZHONG YANZHE</creatorcontrib><creatorcontrib>WU TIANYAN</creatorcontrib><creatorcontrib>LU WEN</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>LI QIQI</creatorcontrib><creatorcontrib>GAO XINBO</creatorcontrib><creatorcontrib>DAI HUIBING</creatorcontrib><title>Faster R-CNN-based human pose estimation method</title><description>The invention discloses a Faster R-CNN-based human pose estimation method. The method comprises the following steps of: inputting an image; classifying human parts; obtaining human pose image data andlabels; training a deep network Faster R-CNN model by using training set image data and labels; obtaining a rectangular detection box; determining human part positions in a space constraint relationship; determining joint point positions; and connecting and outputting joint points of adjacent human parts so as to obtain a pose of an upper body. According to the method, the human parts are dividedinto single parts and combined parts, Faster R-CNN is adopted, and position coordinates corresponding to necks are taken as standards, so that high-precision upper body pose estimation can be obtained under the interference of image backgrounds. The method has the advantages of carrying out robust, high-precision, wide application scene human pose estimation. 本发明公开种基于Faster-RCNN的人体姿态估计方法,其步骤为:输入图像;进行人体部件分类;获取人体姿态图像数据与标签;用</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNB3SywuSS1SCNJ19vPTTUosTk1RyCjNTcxTKMgvTlVILS7JzE0syczPU8hNLcnIT-FhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGFuaG5qbGho7GxKgBAM5ZKjU</recordid><startdate>20181030</startdate><enddate>20181030</enddate><creator>CAI HONGXIA</creator><creator>XING ZHIWEI</creator><creator>HE LIHUO</creator><creator>ZHONG YANZHE</creator><creator>WU TIANYAN</creator><creator>LU WEN</creator><creator>ZHANG YI</creator><creator>LI QIQI</creator><creator>GAO XINBO</creator><creator>DAI HUIBING</creator><scope>EVB</scope></search><sort><creationdate>20181030</creationdate><title>Faster R-CNN-based human pose estimation method</title><author>CAI HONGXIA ; XING ZHIWEI ; HE LIHUO ; ZHONG YANZHE ; WU TIANYAN ; LU WEN ; ZHANG YI ; LI QIQI ; GAO XINBO ; DAI HUIBING</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108717531A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CAI HONGXIA</creatorcontrib><creatorcontrib>XING ZHIWEI</creatorcontrib><creatorcontrib>HE LIHUO</creatorcontrib><creatorcontrib>ZHONG YANZHE</creatorcontrib><creatorcontrib>WU TIANYAN</creatorcontrib><creatorcontrib>LU WEN</creatorcontrib><creatorcontrib>ZHANG YI</creatorcontrib><creatorcontrib>LI QIQI</creatorcontrib><creatorcontrib>GAO XINBO</creatorcontrib><creatorcontrib>DAI HUIBING</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAI HONGXIA</au><au>XING ZHIWEI</au><au>HE LIHUO</au><au>ZHONG YANZHE</au><au>WU TIANYAN</au><au>LU WEN</au><au>ZHANG YI</au><au>LI QIQI</au><au>GAO XINBO</au><au>DAI HUIBING</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Faster R-CNN-based human pose estimation method</title><date>2018-10-30</date><risdate>2018</risdate><abstract>The invention discloses a Faster R-CNN-based human pose estimation method. The method comprises the following steps of: inputting an image; classifying human parts; obtaining human pose image data andlabels; training a deep network Faster R-CNN model by using training set image data and labels; obtaining a rectangular detection box; determining human part positions in a space constraint relationship; determining joint point positions; and connecting and outputting joint points of adjacent human parts so as to obtain a pose of an upper body. According to the method, the human parts are dividedinto single parts and combined parts, Faster R-CNN is adopted, and position coordinates corresponding to necks are taken as standards, so that high-precision upper body pose estimation can be obtained under the interference of image backgrounds. The method has the advantages of carrying out robust, high-precision, wide application scene human pose estimation. 本发明公开种基于Faster-RCNN的人体姿态估计方法,其步骤为:输入图像;进行人体部件分类;获取人体姿态图像数据与标签;用</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108717531A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Faster R-CNN-based human pose estimation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAI%20HONGXIA&rft.date=2018-10-30&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108717531A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true