Method for improving performance based on CNN image recognition by using DCGAN

The invention discloses a method for improving performance based on CNN image recognition by using DCGAN. The method secondly combines an excellent data generation capability of the DCGAN with a framework based on the CNN image recognition, the DCGAN is an improved novel confrontation generation net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FANG WEI, DING YEWEN, ZHANG FEIHONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FANG WEI
DING YEWEN
ZHANG FEIHONG
description The invention discloses a method for improving performance based on CNN image recognition by using DCGAN. The method secondly combines an excellent data generation capability of the DCGAN with a framework based on the CNN image recognition, the DCGAN is an improved novel confrontation generation network on the basis of GAN, the method applies CNN to an original structure, the GAN have deep convolution characteristics, and a better feature representation form is obtained in the data generation aspect. The method solves the problems that training sample data is difficult to collect, the sample similarity is too large and the like in the image recognition process, the limitation of the sample quantity and quality on the classification model optimization problem is broken, the classification model is further strengthened, and the image recognition accuracy is improved. 本发明公开了种利用DCGAN提高基于CNN图像识别性能的方法,该方法将DCGAN出色的数据生成能力与基于CNN图像识别框架进行了二度结合,并且DCGAN是在GAN的基础上经过改进后的新型对抗生成网络,所述方法将CNN应用到了原始结构中,使得GAN具有了深度卷积的特性,并在数据生成方面拥有更好
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108665005A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108665005A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108665005A3</originalsourceid><addsrcrecordid>eNrjZPDzTS3JyE9RSMsvUsjMLSjKL8vMS1coSC0CCuQm5iWnKiQlFqemKOTnKTj7-QGVJKanKhSlJuen52WWZAJFkyoVSotBelyc3R39eBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoYGFmZmpgYGpozExagClzjVl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for improving performance based on CNN image recognition by using DCGAN</title><source>esp@cenet</source><creator>FANG WEI ; DING YEWEN ; ZHANG FEIHONG</creator><creatorcontrib>FANG WEI ; DING YEWEN ; ZHANG FEIHONG</creatorcontrib><description>The invention discloses a method for improving performance based on CNN image recognition by using DCGAN. The method secondly combines an excellent data generation capability of the DCGAN with a framework based on the CNN image recognition, the DCGAN is an improved novel confrontation generation network on the basis of GAN, the method applies CNN to an original structure, the GAN have deep convolution characteristics, and a better feature representation form is obtained in the data generation aspect. The method solves the problems that training sample data is difficult to collect, the sample similarity is too large and the like in the image recognition process, the limitation of the sample quantity and quality on the classification model optimization problem is broken, the classification model is further strengthened, and the image recognition accuracy is improved. 本发明公开了种利用DCGAN提高基于CNN图像识别性能的方法,该方法将DCGAN出色的数据生成能力与基于CNN图像识别框架进行了二度结合,并且DCGAN是在GAN的基础上经过改进后的新型对抗生成网络,所述方法将CNN应用到了原始结构中,使得GAN具有了深度卷积的特性,并在数据生成方面拥有更好</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181016&amp;DB=EPODOC&amp;CC=CN&amp;NR=108665005A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20181016&amp;DB=EPODOC&amp;CC=CN&amp;NR=108665005A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FANG WEI</creatorcontrib><creatorcontrib>DING YEWEN</creatorcontrib><creatorcontrib>ZHANG FEIHONG</creatorcontrib><title>Method for improving performance based on CNN image recognition by using DCGAN</title><description>The invention discloses a method for improving performance based on CNN image recognition by using DCGAN. The method secondly combines an excellent data generation capability of the DCGAN with a framework based on the CNN image recognition, the DCGAN is an improved novel confrontation generation network on the basis of GAN, the method applies CNN to an original structure, the GAN have deep convolution characteristics, and a better feature representation form is obtained in the data generation aspect. The method solves the problems that training sample data is difficult to collect, the sample similarity is too large and the like in the image recognition process, the limitation of the sample quantity and quality on the classification model optimization problem is broken, the classification model is further strengthened, and the image recognition accuracy is improved. 本发明公开了种利用DCGAN提高基于CNN图像识别性能的方法,该方法将DCGAN出色的数据生成能力与基于CNN图像识别框架进行了二度结合,并且DCGAN是在GAN的基础上经过改进后的新型对抗生成网络,所述方法将CNN应用到了原始结构中,使得GAN具有了深度卷积的特性,并在数据生成方面拥有更好</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPDzTS3JyE9RSMsvUsjMLSjKL8vMS1coSC0CCuQm5iWnKiQlFqemKOTnKTj7-QGVJKanKhSlJuen52WWZAJFkyoVSotBelyc3R39eBhY0xJzilN5oTQ3g6Kba4izh25qQX58anFBYnJqXmpJvLOfoYGFmZmpgYGpozExagClzjVl</recordid><startdate>20181016</startdate><enddate>20181016</enddate><creator>FANG WEI</creator><creator>DING YEWEN</creator><creator>ZHANG FEIHONG</creator><scope>EVB</scope></search><sort><creationdate>20181016</creationdate><title>Method for improving performance based on CNN image recognition by using DCGAN</title><author>FANG WEI ; DING YEWEN ; ZHANG FEIHONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108665005A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FANG WEI</creatorcontrib><creatorcontrib>DING YEWEN</creatorcontrib><creatorcontrib>ZHANG FEIHONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FANG WEI</au><au>DING YEWEN</au><au>ZHANG FEIHONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for improving performance based on CNN image recognition by using DCGAN</title><date>2018-10-16</date><risdate>2018</risdate><abstract>The invention discloses a method for improving performance based on CNN image recognition by using DCGAN. The method secondly combines an excellent data generation capability of the DCGAN with a framework based on the CNN image recognition, the DCGAN is an improved novel confrontation generation network on the basis of GAN, the method applies CNN to an original structure, the GAN have deep convolution characteristics, and a better feature representation form is obtained in the data generation aspect. The method solves the problems that training sample data is difficult to collect, the sample similarity is too large and the like in the image recognition process, the limitation of the sample quantity and quality on the classification model optimization problem is broken, the classification model is further strengthened, and the image recognition accuracy is improved. 本发明公开了种利用DCGAN提高基于CNN图像识别性能的方法,该方法将DCGAN出色的数据生成能力与基于CNN图像识别框架进行了二度结合,并且DCGAN是在GAN的基础上经过改进后的新型对抗生成网络,所述方法将CNN应用到了原始结构中,使得GAN具有了深度卷积的特性,并在数据生成方面拥有更好</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108665005A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Method for improving performance based on CNN image recognition by using DCGAN
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FANG%20WEI&rft.date=2018-10-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108665005A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true