Abnormal information text classification method based on knowledge graph

The invention provides an abnormal information text classification method based on a knowledge graph. According to the method, first, a domain knowledge graph is constructed, and an entity identifierand an entity link based on the domain knowledge graph are constructed; second, text feature represen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: HUAI JINPENG, WANG FEI, ZHAO XIAOHANG, WANG YUE, ZHANG RICHONG, DU CUILAN, MA HONGYUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HUAI JINPENG
WANG FEI
ZHAO XIAOHANG
WANG YUE
ZHANG RICHONG
DU CUILAN
MA HONGYUAN
description The invention provides an abnormal information text classification method based on a knowledge graph. According to the method, first, a domain knowledge graph is constructed, and an entity identifierand an entity link based on the domain knowledge graph are constructed; second, text feature representation vectors v and entity feature representation vectors v are constructed; and last,the text feature representation vectors and the entity feature representation vectors are merged to obtain new text representation vectors v fusing knowledge features, classified training is performed on the new text representation vectors, and a final classification result is obtained. 本发明提出种基于知识图谱的异常信息文本分类方法,首先构建领域知识图谱,构建出基于所述领域知识图谱的实体识别和实体链接,然后构建文本特征表示向量v和实体特征表示向量v,最后将文本特征表示向量与实体特征表示向量拼接得到融入了知识特征的新的文本表示向量v,对所述新的文本表示向量进行分类训练,得到最终的分类结果。
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108595708A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108595708A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108595708A3</originalsourceid><addsrcrecordid>eNrjZPBwTMrLL8pNzFHIzEsDMUoy8_MUSlIrShSScxKLizPTMpMhYrmpJRn5KQpJicWpKQpAfnZefnlOakp6qkJ6UWJBBg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzSwMLU0NTewcDQmRg0A6Pw01w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Abnormal information text classification method based on knowledge graph</title><source>esp@cenet</source><creator>HUAI JINPENG ; WANG FEI ; ZHAO XIAOHANG ; WANG YUE ; ZHANG RICHONG ; DU CUILAN ; MA HONGYUAN</creator><creatorcontrib>HUAI JINPENG ; WANG FEI ; ZHAO XIAOHANG ; WANG YUE ; ZHANG RICHONG ; DU CUILAN ; MA HONGYUAN</creatorcontrib><description>The invention provides an abnormal information text classification method based on a knowledge graph. According to the method, first, a domain knowledge graph is constructed, and an entity identifierand an entity link based on the domain knowledge graph are constructed; second, text feature representation vectors v and entity feature representation vectors v are constructed; and last,the text feature representation vectors and the entity feature representation vectors are merged to obtain new text representation vectors v fusing knowledge features, classified training is performed on the new text representation vectors, and a final classification result is obtained. 本发明提出种基于知识图谱的异常信息文本分类方法,首先构建领域知识图谱,构建出基于所述领域知识图谱的实体识别和实体链接,然后构建文本特征表示向量v和实体特征表示向量v,最后将文本特征表示向量与实体特征表示向量拼接得到融入了知识特征的新的文本表示向量v,对所述新的文本表示向量进行分类训练,得到最终的分类结果。</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180928&amp;DB=EPODOC&amp;CC=CN&amp;NR=108595708A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180928&amp;DB=EPODOC&amp;CC=CN&amp;NR=108595708A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HUAI JINPENG</creatorcontrib><creatorcontrib>WANG FEI</creatorcontrib><creatorcontrib>ZHAO XIAOHANG</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>ZHANG RICHONG</creatorcontrib><creatorcontrib>DU CUILAN</creatorcontrib><creatorcontrib>MA HONGYUAN</creatorcontrib><title>Abnormal information text classification method based on knowledge graph</title><description>The invention provides an abnormal information text classification method based on a knowledge graph. According to the method, first, a domain knowledge graph is constructed, and an entity identifierand an entity link based on the domain knowledge graph are constructed; second, text feature representation vectors v and entity feature representation vectors v are constructed; and last,the text feature representation vectors and the entity feature representation vectors are merged to obtain new text representation vectors v fusing knowledge features, classified training is performed on the new text representation vectors, and a final classification result is obtained. 本发明提出种基于知识图谱的异常信息文本分类方法,首先构建领域知识图谱,构建出基于所述领域知识图谱的实体识别和实体链接,然后构建文本特征表示向量v和实体特征表示向量v,最后将文本特征表示向量与实体特征表示向量拼接得到融入了知识特征的新的文本表示向量v,对所述新的文本表示向量进行分类训练,得到最终的分类结果。</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBwTMrLL8pNzFHIzEsDMUoy8_MUSlIrShSScxKLizPTMpMhYrmpJRn5KQpJicWpKQpAfnZefnlOakp6qkJ6UWJBBg8Da1piTnEqL5TmZlB0cw1x9tBNLciPTy0uSExOzUstiXf2MzSwMLU0NTewcDQmRg0A6Pw01w</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>HUAI JINPENG</creator><creator>WANG FEI</creator><creator>ZHAO XIAOHANG</creator><creator>WANG YUE</creator><creator>ZHANG RICHONG</creator><creator>DU CUILAN</creator><creator>MA HONGYUAN</creator><scope>EVB</scope></search><sort><creationdate>20180928</creationdate><title>Abnormal information text classification method based on knowledge graph</title><author>HUAI JINPENG ; WANG FEI ; ZHAO XIAOHANG ; WANG YUE ; ZHANG RICHONG ; DU CUILAN ; MA HONGYUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108595708A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>HUAI JINPENG</creatorcontrib><creatorcontrib>WANG FEI</creatorcontrib><creatorcontrib>ZHAO XIAOHANG</creatorcontrib><creatorcontrib>WANG YUE</creatorcontrib><creatorcontrib>ZHANG RICHONG</creatorcontrib><creatorcontrib>DU CUILAN</creatorcontrib><creatorcontrib>MA HONGYUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HUAI JINPENG</au><au>WANG FEI</au><au>ZHAO XIAOHANG</au><au>WANG YUE</au><au>ZHANG RICHONG</au><au>DU CUILAN</au><au>MA HONGYUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Abnormal information text classification method based on knowledge graph</title><date>2018-09-28</date><risdate>2018</risdate><abstract>The invention provides an abnormal information text classification method based on a knowledge graph. According to the method, first, a domain knowledge graph is constructed, and an entity identifierand an entity link based on the domain knowledge graph are constructed; second, text feature representation vectors v and entity feature representation vectors v are constructed; and last,the text feature representation vectors and the entity feature representation vectors are merged to obtain new text representation vectors v fusing knowledge features, classified training is performed on the new text representation vectors, and a final classification result is obtained. 本发明提出种基于知识图谱的异常信息文本分类方法,首先构建领域知识图谱,构建出基于所述领域知识图谱的实体识别和实体链接,然后构建文本特征表示向量v和实体特征表示向量v,最后将文本特征表示向量与实体特征表示向量拼接得到融入了知识特征的新的文本表示向量v,对所述新的文本表示向量进行分类训练,得到最终的分类结果。</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108595708A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Abnormal information text classification method based on knowledge graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A55%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HUAI%20JINPENG&rft.date=2018-09-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108595708A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true