Hydrology telemetering data anomaly detection method based on spatio-temporal characteristics

The invention discloses a hydrology telemetering data anomaly detection method based on spatio-temporal characteristics. The method includes the following steps of 1) carrying out the sub-sequence division on the hydrology telemetering data by using a sliding window method, and carrying out feature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN DANBO, ZHOU XIAOFENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN DANBO
ZHOU XIAOFENG
description The invention discloses a hydrology telemetering data anomaly detection method based on spatio-temporal characteristics. The method includes the following steps of 1) carrying out the sub-sequence division on the hydrology telemetering data by using a sliding window method, and carrying out feature extraction on each group of segmented sub-sequences, and forming a set of two-dimensional points capable of being subjected to static method clustering through combination by a certain algorithm, and performing the dimensionality reduction on the two-dimensional points to make the points be the static data which can be clustered; 2) expanding the K-means method into a three-dimensional space for clustering the hydrology telemetering data; 3) calculating the incidence relation between all hydrology telemetering data clusters to serve as a basis for judging whether the hydrology telemetering data is abnormal or not; and 4) determining whether the hydrology telemetering data sub-sequence of a certain measuring station
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108520267A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108520267A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108520267A3</originalsourceid><addsrcrecordid>eNqNjE0KwjAQhbNxIeodxgMUasWfrRSlK1dupYzJ2AaSTEhmk9sbwQO4erzv_SzVcygmseOpgJAjT0LJhgkMCgIG9ugKmEq1WA5Q85kNvDCTgepzxMobIR85oQM9Y0L9_chidV6rxRtdps1PV2p7uz76oaHII9WxpkAy9vddez50bXc8Xfb_dD53KD0s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Hydrology telemetering data anomaly detection method based on spatio-temporal characteristics</title><source>esp@cenet</source><creator>CHEN DANBO ; ZHOU XIAOFENG</creator><creatorcontrib>CHEN DANBO ; ZHOU XIAOFENG</creatorcontrib><description>The invention discloses a hydrology telemetering data anomaly detection method based on spatio-temporal characteristics. The method includes the following steps of 1) carrying out the sub-sequence division on the hydrology telemetering data by using a sliding window method, and carrying out feature extraction on each group of segmented sub-sequences, and forming a set of two-dimensional points capable of being subjected to static method clustering through combination by a certain algorithm, and performing the dimensionality reduction on the two-dimensional points to make the points be the static data which can be clustered; 2) expanding the K-means method into a three-dimensional space for clustering the hydrology telemetering data; 3) calculating the incidence relation between all hydrology telemetering data clusters to serve as a basis for judging whether the hydrology telemetering data is abnormal or not; and 4) determining whether the hydrology telemetering data sub-sequence of a certain measuring station</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180911&amp;DB=EPODOC&amp;CC=CN&amp;NR=108520267A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180911&amp;DB=EPODOC&amp;CC=CN&amp;NR=108520267A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN DANBO</creatorcontrib><creatorcontrib>ZHOU XIAOFENG</creatorcontrib><title>Hydrology telemetering data anomaly detection method based on spatio-temporal characteristics</title><description>The invention discloses a hydrology telemetering data anomaly detection method based on spatio-temporal characteristics. The method includes the following steps of 1) carrying out the sub-sequence division on the hydrology telemetering data by using a sliding window method, and carrying out feature extraction on each group of segmented sub-sequences, and forming a set of two-dimensional points capable of being subjected to static method clustering through combination by a certain algorithm, and performing the dimensionality reduction on the two-dimensional points to make the points be the static data which can be clustered; 2) expanding the K-means method into a three-dimensional space for clustering the hydrology telemetering data; 3) calculating the incidence relation between all hydrology telemetering data clusters to serve as a basis for judging whether the hydrology telemetering data is abnormal or not; and 4) determining whether the hydrology telemetering data sub-sequence of a certain measuring station</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjE0KwjAQhbNxIeodxgMUasWfrRSlK1dupYzJ2AaSTEhmk9sbwQO4erzv_SzVcygmseOpgJAjT0LJhgkMCgIG9ugKmEq1WA5Q85kNvDCTgepzxMobIR85oQM9Y0L9_chidV6rxRtdps1PV2p7uz76oaHII9WxpkAy9vddez50bXc8Xfb_dD53KD0s</recordid><startdate>20180911</startdate><enddate>20180911</enddate><creator>CHEN DANBO</creator><creator>ZHOU XIAOFENG</creator><scope>EVB</scope></search><sort><creationdate>20180911</creationdate><title>Hydrology telemetering data anomaly detection method based on spatio-temporal characteristics</title><author>CHEN DANBO ; ZHOU XIAOFENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108520267A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN DANBO</creatorcontrib><creatorcontrib>ZHOU XIAOFENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN DANBO</au><au>ZHOU XIAOFENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Hydrology telemetering data anomaly detection method based on spatio-temporal characteristics</title><date>2018-09-11</date><risdate>2018</risdate><abstract>The invention discloses a hydrology telemetering data anomaly detection method based on spatio-temporal characteristics. The method includes the following steps of 1) carrying out the sub-sequence division on the hydrology telemetering data by using a sliding window method, and carrying out feature extraction on each group of segmented sub-sequences, and forming a set of two-dimensional points capable of being subjected to static method clustering through combination by a certain algorithm, and performing the dimensionality reduction on the two-dimensional points to make the points be the static data which can be clustered; 2) expanding the K-means method into a three-dimensional space for clustering the hydrology telemetering data; 3) calculating the incidence relation between all hydrology telemetering data clusters to serve as a basis for judging whether the hydrology telemetering data is abnormal or not; and 4) determining whether the hydrology telemetering data sub-sequence of a certain measuring station</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108520267A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Hydrology telemetering data anomaly detection method based on spatio-temporal characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20DANBO&rft.date=2018-09-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108520267A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true