Nanoparticle collision contact model-based shale pore throat blocking simulation method

The invention discloses a nanoparticle collision contact model-based shale pore throat blocking simulation method, aims at solving the problem that particle blocking effect is not ideal in the prior art, and has the effects of correctly describing collision behaviors among nanoparticles in drilling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHANG RUI, LIU ZEHUA, GAO DONGLIANG, TANG YINAN, YU YANAN, BO KEHAO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHANG RUI
LIU ZEHUA
GAO DONGLIANG
TANG YINAN
YU YANAN
BO KEHAO
description The invention discloses a nanoparticle collision contact model-based shale pore throat blocking simulation method, aims at solving the problem that particle blocking effect is not ideal in the prior art, and has the effects of correctly describing collision behaviors among nanoparticles in drilling fluids and simulating mutual action between particles and fluids more truly. The method comprises the following steps of: representing a shale pore throat structure, carrying out multi-point statistical analysis to give a main structure feature, and constructing a shale pore throat structure simulation body; forming a blocking particle swarm according to related parameters of blocking particles and a drilling fluid, and setting a boundary condition and an initial condition; carrying out particlecontact judgement to determine a contact relationship among the particles; establishing a movement equation of moving the blocking particles along with the drilling fluid; solving the movement equation by adoption of a dynam
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108491639A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108491639A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108491639A3</originalsourceid><addsrcrecordid>eNqNi0EKwjAQAHPxIOof4gMKlorYoxTFU0-Cx7JNVhvcZEN2_b8VfICnmcPM0tx7SJyhaHCE1jFRkMBptqTg1Eb2SNUIgt7KBHOTuaDVqTCoHYndK6SnlRDfBPo9I-rEfm0WDyDBzY8rs72cb921wswDSgaHCXXo-np33Lf1oWlPzT_NB7kkOqk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Nanoparticle collision contact model-based shale pore throat blocking simulation method</title><source>esp@cenet</source><creator>ZHANG RUI ; LIU ZEHUA ; GAO DONGLIANG ; TANG YINAN ; YU YANAN ; BO KEHAO</creator><creatorcontrib>ZHANG RUI ; LIU ZEHUA ; GAO DONGLIANG ; TANG YINAN ; YU YANAN ; BO KEHAO</creatorcontrib><description>The invention discloses a nanoparticle collision contact model-based shale pore throat blocking simulation method, aims at solving the problem that particle blocking effect is not ideal in the prior art, and has the effects of correctly describing collision behaviors among nanoparticles in drilling fluids and simulating mutual action between particles and fluids more truly. The method comprises the following steps of: representing a shale pore throat structure, carrying out multi-point statistical analysis to give a main structure feature, and constructing a shale pore throat structure simulation body; forming a blocking particle swarm according to related parameters of blocking particles and a drilling fluid, and setting a boundary condition and an initial condition; carrying out particlecontact judgement to determine a contact relationship among the particles; establishing a movement equation of moving the blocking particles along with the drilling fluid; solving the movement equation by adoption of a dynam</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180904&amp;DB=EPODOC&amp;CC=CN&amp;NR=108491639A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180904&amp;DB=EPODOC&amp;CC=CN&amp;NR=108491639A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>GAO DONGLIANG</creatorcontrib><creatorcontrib>TANG YINAN</creatorcontrib><creatorcontrib>YU YANAN</creatorcontrib><creatorcontrib>BO KEHAO</creatorcontrib><title>Nanoparticle collision contact model-based shale pore throat blocking simulation method</title><description>The invention discloses a nanoparticle collision contact model-based shale pore throat blocking simulation method, aims at solving the problem that particle blocking effect is not ideal in the prior art, and has the effects of correctly describing collision behaviors among nanoparticles in drilling fluids and simulating mutual action between particles and fluids more truly. The method comprises the following steps of: representing a shale pore throat structure, carrying out multi-point statistical analysis to give a main structure feature, and constructing a shale pore throat structure simulation body; forming a blocking particle swarm according to related parameters of blocking particles and a drilling fluid, and setting a boundary condition and an initial condition; carrying out particlecontact judgement to determine a contact relationship among the particles; establishing a movement equation of moving the blocking particles along with the drilling fluid; solving the movement equation by adoption of a dynam</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi0EKwjAQAHPxIOof4gMKlorYoxTFU0-Cx7JNVhvcZEN2_b8VfICnmcPM0tx7SJyhaHCE1jFRkMBptqTg1Eb2SNUIgt7KBHOTuaDVqTCoHYndK6SnlRDfBPo9I-rEfm0WDyDBzY8rs72cb921wswDSgaHCXXo-np33Lf1oWlPzT_NB7kkOqk</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>ZHANG RUI</creator><creator>LIU ZEHUA</creator><creator>GAO DONGLIANG</creator><creator>TANG YINAN</creator><creator>YU YANAN</creator><creator>BO KEHAO</creator><scope>EVB</scope></search><sort><creationdate>20180904</creationdate><title>Nanoparticle collision contact model-based shale pore throat blocking simulation method</title><author>ZHANG RUI ; LIU ZEHUA ; GAO DONGLIANG ; TANG YINAN ; YU YANAN ; BO KEHAO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108491639A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHANG RUI</creatorcontrib><creatorcontrib>LIU ZEHUA</creatorcontrib><creatorcontrib>GAO DONGLIANG</creatorcontrib><creatorcontrib>TANG YINAN</creatorcontrib><creatorcontrib>YU YANAN</creatorcontrib><creatorcontrib>BO KEHAO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHANG RUI</au><au>LIU ZEHUA</au><au>GAO DONGLIANG</au><au>TANG YINAN</au><au>YU YANAN</au><au>BO KEHAO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Nanoparticle collision contact model-based shale pore throat blocking simulation method</title><date>2018-09-04</date><risdate>2018</risdate><abstract>The invention discloses a nanoparticle collision contact model-based shale pore throat blocking simulation method, aims at solving the problem that particle blocking effect is not ideal in the prior art, and has the effects of correctly describing collision behaviors among nanoparticles in drilling fluids and simulating mutual action between particles and fluids more truly. The method comprises the following steps of: representing a shale pore throat structure, carrying out multi-point statistical analysis to give a main structure feature, and constructing a shale pore throat structure simulation body; forming a blocking particle swarm according to related parameters of blocking particles and a drilling fluid, and setting a boundary condition and an initial condition; carrying out particlecontact judgement to determine a contact relationship among the particles; establishing a movement equation of moving the blocking particles along with the drilling fluid; solving the movement equation by adoption of a dynam</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108491639A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Nanoparticle collision contact model-based shale pore throat blocking simulation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T15%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHANG%20RUI&rft.date=2018-09-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108491639A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true