Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method
The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | CHEN WEIZHAO BAO LIANG BU XIAOXUAN |
description | The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108491226A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108491226A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108491226A3</originalsourceid><addsrcrecordid>eNqNyzsOwjAQRVE3FAjYw7CASCQgFEpkgahooA9DPAmG2GP502T1GMECqJ50dd5U3OSQQiQPI7PRti_uGEjBxaF_Qcu2033yGDVbyAkNfSymyCbHFlA9892QjYBWAbuojR6_PtsHq7mYdDgEWvx2JpbHw1WeCnLcUHDYkqXYyHO5qje7sqq2-_U_5g1o1T6V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><source>esp@cenet</source><creator>CHEN WEIZHAO ; BAO LIANG ; BU XIAOXUAN</creator><creatorcontrib>CHEN WEIZHAO ; BAO LIANG ; BU XIAOXUAN</creatorcontrib><description>The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180904&DB=EPODOC&CC=CN&NR=108491226A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180904&DB=EPODOC&CC=CN&NR=108491226A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN WEIZHAO</creatorcontrib><creatorcontrib>BAO LIANG</creatorcontrib><creatorcontrib>BU XIAOXUAN</creatorcontrib><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><description>The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzsOwjAQRVE3FAjYw7CASCQgFEpkgahooA9DPAmG2GP502T1GMECqJ50dd5U3OSQQiQPI7PRti_uGEjBxaF_Qcu2033yGDVbyAkNfSymyCbHFlA9892QjYBWAbuojR6_PtsHq7mYdDgEWvx2JpbHw1WeCnLcUHDYkqXYyHO5qje7sqq2-_U_5g1o1T6V</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>CHEN WEIZHAO</creator><creator>BAO LIANG</creator><creator>BU XIAOXUAN</creator><scope>EVB</scope></search><sort><creationdate>20180904</creationdate><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><author>CHEN WEIZHAO ; BAO LIANG ; BU XIAOXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108491226A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN WEIZHAO</creatorcontrib><creatorcontrib>BAO LIANG</creatorcontrib><creatorcontrib>BU XIAOXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN WEIZHAO</au><au>BAO LIANG</au><au>BU XIAOXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><date>2018-09-04</date><risdate>2018</risdate><abstract>The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN108491226A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20WEIZHAO&rft.date=2018-09-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108491226A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |