Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method

The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN WEIZHAO, BAO LIANG, BU XIAOXUAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN WEIZHAO
BAO LIANG
BU XIAOXUAN
description The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108491226A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108491226A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108491226A3</originalsourceid><addsrcrecordid>eNqNyzsOwjAQRVE3FAjYw7CASCQgFEpkgahooA9DPAmG2GP502T1GMECqJ50dd5U3OSQQiQPI7PRti_uGEjBxaF_Qcu2033yGDVbyAkNfSymyCbHFlA9892QjYBWAbuojR6_PtsHq7mYdDgEWvx2JpbHw1WeCnLcUHDYkqXYyHO5qje7sqq2-_U_5g1o1T6V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><source>esp@cenet</source><creator>CHEN WEIZHAO ; BAO LIANG ; BU XIAOXUAN</creator><creatorcontrib>CHEN WEIZHAO ; BAO LIANG ; BU XIAOXUAN</creatorcontrib><description>The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180904&amp;DB=EPODOC&amp;CC=CN&amp;NR=108491226A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25569,76552</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180904&amp;DB=EPODOC&amp;CC=CN&amp;NR=108491226A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN WEIZHAO</creatorcontrib><creatorcontrib>BAO LIANG</creatorcontrib><creatorcontrib>BU XIAOXUAN</creatorcontrib><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><description>The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzsOwjAQRVE3FAjYw7CASCQgFEpkgahooA9DPAmG2GP502T1GMECqJ50dd5U3OSQQiQPI7PRti_uGEjBxaF_Qcu2033yGDVbyAkNfSymyCbHFlA9892QjYBWAbuojR6_PtsHq7mYdDgEWvx2JpbHw1WeCnLcUHDYkqXYyHO5qje7sqq2-_U_5g1o1T6V</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>CHEN WEIZHAO</creator><creator>BAO LIANG</creator><creator>BU XIAOXUAN</creator><scope>EVB</scope></search><sort><creationdate>20180904</creationdate><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><author>CHEN WEIZHAO ; BAO LIANG ; BU XIAOXUAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108491226A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN WEIZHAO</creatorcontrib><creatorcontrib>BAO LIANG</creatorcontrib><creatorcontrib>BU XIAOXUAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN WEIZHAO</au><au>BAO LIANG</au><au>BU XIAOXUAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method</title><date>2018-09-04</date><risdate>2018</risdate><abstract>The invention discloses a cluster zooming-based Spark configuration parameter automatic adjustment and optimization method. The method comprises the steps of (1) establishing a cluster; (2) selectinga configuration parameter set; (3) determining configuration parameter value types and ranges; (4) zooming the cluster; (5) training a random forest model; (6) screening an optimal configuration; and(7) verifying a configuration effect. The method can be applied to the technical field of massive data processing; by zooming the memory configuration parameter value ranges and a to-be-processed dataquantity of a distributed memory computing framework Spark, the time for evaluating each configuration is shortened; the relationships between the configurations and the influence of the cluster performance of the distributed memory computing framework Spark are established through the random forest model; and the configuration for optimizing the cluster performance of the distributed memory computing framework Spark consi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108491226A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Cluster zooming-based Spark configuration parameter automatic adjustment and optimization method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN%20WEIZHAO&rft.date=2018-09-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108491226A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true