Sparse-expression-graph-based semi-supervised classification method for hyperspectral images

The invention discloses a sparse-expression-graph-based semi-supervised classification method for hyperspectral images. The method comprises: according to pixel data of a hyperspectral image, a category probability matrix is obtained, wherein the pixel data include pixel data with categories marked...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIN WEI, SANG NONG, DU WENPENG, GAO CHANGXIN, PI ZHIXIONG, SHAO YUANJIE, HAN CHUCHU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIN WEI
SANG NONG
DU WENPENG
GAO CHANGXIN
PI ZHIXIONG
SHAO YUANJIE
HAN CHUCHU
description The invention discloses a sparse-expression-graph-based semi-supervised classification method for hyperspectral images. The method comprises: according to pixel data of a hyperspectral image, a category probability matrix is obtained, wherein the pixel data include pixel data with categories marked and pixel data with unmarked categories; on the basis of the category probability matrix and spatialdomain information of the pixel data, a regular term is constructed, a constrained sparse expression objective function is obtained based on the regular term, and a similarity weight matrix is obtained by using the sparse expression objective function; and on the basis of the similarity weight matrix, the category of each pixel in the hyperspectral image is obtained by mark propagation. Therefore, problems of high sensitivity to noises, the need of manual parameter setting, and insufficient discriminating of the existing graph construction method can be solved. The sparse-expression-graph-based semi-supervised classi
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108460326A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108460326A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108460326A3</originalsourceid><addsrcrecordid>eNqNykEKwjAQRuFsXIh6h3iAQLVSupWiuHKjS6GM6d820DZDJore3ggewNXjwTdXtwtTEBi8OEDE-cl0gbg3dxI0WjA6Iw9GeLrv24ESap2lmKgeEXvf6NYH3b8TEoaNgQbtRuogSzVraRCsfl2o9fFwrU4G7GsIk8WEWFfnTVbuiizfFvv8H_MBWN89Cg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Sparse-expression-graph-based semi-supervised classification method for hyperspectral images</title><source>esp@cenet</source><creator>LIN WEI ; SANG NONG ; DU WENPENG ; GAO CHANGXIN ; PI ZHIXIONG ; SHAO YUANJIE ; HAN CHUCHU</creator><creatorcontrib>LIN WEI ; SANG NONG ; DU WENPENG ; GAO CHANGXIN ; PI ZHIXIONG ; SHAO YUANJIE ; HAN CHUCHU</creatorcontrib><description>The invention discloses a sparse-expression-graph-based semi-supervised classification method for hyperspectral images. The method comprises: according to pixel data of a hyperspectral image, a category probability matrix is obtained, wherein the pixel data include pixel data with categories marked and pixel data with unmarked categories; on the basis of the category probability matrix and spatialdomain information of the pixel data, a regular term is constructed, a constrained sparse expression objective function is obtained based on the regular term, and a similarity weight matrix is obtained by using the sparse expression objective function; and on the basis of the similarity weight matrix, the category of each pixel in the hyperspectral image is obtained by mark propagation. Therefore, problems of high sensitivity to noises, the need of manual parameter setting, and insufficient discriminating of the existing graph construction method can be solved. The sparse-expression-graph-based semi-supervised classi</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180828&amp;DB=EPODOC&amp;CC=CN&amp;NR=108460326A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180828&amp;DB=EPODOC&amp;CC=CN&amp;NR=108460326A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIN WEI</creatorcontrib><creatorcontrib>SANG NONG</creatorcontrib><creatorcontrib>DU WENPENG</creatorcontrib><creatorcontrib>GAO CHANGXIN</creatorcontrib><creatorcontrib>PI ZHIXIONG</creatorcontrib><creatorcontrib>SHAO YUANJIE</creatorcontrib><creatorcontrib>HAN CHUCHU</creatorcontrib><title>Sparse-expression-graph-based semi-supervised classification method for hyperspectral images</title><description>The invention discloses a sparse-expression-graph-based semi-supervised classification method for hyperspectral images. The method comprises: according to pixel data of a hyperspectral image, a category probability matrix is obtained, wherein the pixel data include pixel data with categories marked and pixel data with unmarked categories; on the basis of the category probability matrix and spatialdomain information of the pixel data, a regular term is constructed, a constrained sparse expression objective function is obtained based on the regular term, and a similarity weight matrix is obtained by using the sparse expression objective function; and on the basis of the similarity weight matrix, the category of each pixel in the hyperspectral image is obtained by mark propagation. Therefore, problems of high sensitivity to noises, the need of manual parameter setting, and insufficient discriminating of the existing graph construction method can be solved. The sparse-expression-graph-based semi-supervised classi</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNykEKwjAQRuFsXIh6h3iAQLVSupWiuHKjS6GM6d820DZDJore3ggewNXjwTdXtwtTEBi8OEDE-cl0gbg3dxI0WjA6Iw9GeLrv24ESap2lmKgeEXvf6NYH3b8TEoaNgQbtRuogSzVraRCsfl2o9fFwrU4G7GsIk8WEWFfnTVbuiizfFvv8H_MBWN89Cg</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>LIN WEI</creator><creator>SANG NONG</creator><creator>DU WENPENG</creator><creator>GAO CHANGXIN</creator><creator>PI ZHIXIONG</creator><creator>SHAO YUANJIE</creator><creator>HAN CHUCHU</creator><scope>EVB</scope></search><sort><creationdate>20180828</creationdate><title>Sparse-expression-graph-based semi-supervised classification method for hyperspectral images</title><author>LIN WEI ; SANG NONG ; DU WENPENG ; GAO CHANGXIN ; PI ZHIXIONG ; SHAO YUANJIE ; HAN CHUCHU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108460326A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIN WEI</creatorcontrib><creatorcontrib>SANG NONG</creatorcontrib><creatorcontrib>DU WENPENG</creatorcontrib><creatorcontrib>GAO CHANGXIN</creatorcontrib><creatorcontrib>PI ZHIXIONG</creatorcontrib><creatorcontrib>SHAO YUANJIE</creatorcontrib><creatorcontrib>HAN CHUCHU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIN WEI</au><au>SANG NONG</au><au>DU WENPENG</au><au>GAO CHANGXIN</au><au>PI ZHIXIONG</au><au>SHAO YUANJIE</au><au>HAN CHUCHU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Sparse-expression-graph-based semi-supervised classification method for hyperspectral images</title><date>2018-08-28</date><risdate>2018</risdate><abstract>The invention discloses a sparse-expression-graph-based semi-supervised classification method for hyperspectral images. The method comprises: according to pixel data of a hyperspectral image, a category probability matrix is obtained, wherein the pixel data include pixel data with categories marked and pixel data with unmarked categories; on the basis of the category probability matrix and spatialdomain information of the pixel data, a regular term is constructed, a constrained sparse expression objective function is obtained based on the regular term, and a similarity weight matrix is obtained by using the sparse expression objective function; and on the basis of the similarity weight matrix, the category of each pixel in the hyperspectral image is obtained by mark propagation. Therefore, problems of high sensitivity to noises, the need of manual parameter setting, and insufficient discriminating of the existing graph construction method can be solved. The sparse-expression-graph-based semi-supervised classi</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108460326A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Sparse-expression-graph-based semi-supervised classification method for hyperspectral images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIN%20WEI&rft.date=2018-08-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108460326A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true