Navigation method based on bionic hippocampus cognitive map

The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D informati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YUAN YUNHE, ZHAI YUJIA, YU NAIGONG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YUAN YUNHE
ZHAI YUJIA
YU NAIGONG
description The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108362284A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108362284A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108362284A3</originalsourceid><addsrcrecordid>eNrjZLD2SyzLTE8syczPU8hNLcnIT1FISixOTVEA8pOAgpnJChmZBQX5yYm5BaXFCsn56XmZJZllqQq5iQU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_QwMLYzMjIwsTRmBg1AL_cL5Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Navigation method based on bionic hippocampus cognitive map</title><source>esp@cenet</source><creator>YUAN YUNHE ; ZHAI YUJIA ; YU NAIGONG</creator><creatorcontrib>YUAN YUNHE ; ZHAI YUJIA ; YU NAIGONG</creatorcontrib><description>The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th</description><language>chi ; eng</language><subject>GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180803&amp;DB=EPODOC&amp;CC=CN&amp;NR=108362284A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180803&amp;DB=EPODOC&amp;CC=CN&amp;NR=108362284A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUAN YUNHE</creatorcontrib><creatorcontrib>ZHAI YUJIA</creatorcontrib><creatorcontrib>YU NAIGONG</creatorcontrib><title>Navigation method based on bionic hippocampus cognitive map</title><description>The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th</description><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD2SyzLTE8syczPU8hNLcnIT1FISixOTVEA8pOAgpnJChmZBQX5yYm5BaXFCsn56XmZJZllqQq5iQU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_QwMLYzMjIwsTRmBg1AL_cL5Y</recordid><startdate>20180803</startdate><enddate>20180803</enddate><creator>YUAN YUNHE</creator><creator>ZHAI YUJIA</creator><creator>YU NAIGONG</creator><scope>EVB</scope></search><sort><creationdate>20180803</creationdate><title>Navigation method based on bionic hippocampus cognitive map</title><author>YUAN YUNHE ; ZHAI YUJIA ; YU NAIGONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108362284A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YUAN YUNHE</creatorcontrib><creatorcontrib>ZHAI YUJIA</creatorcontrib><creatorcontrib>YU NAIGONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUAN YUNHE</au><au>ZHAI YUJIA</au><au>YU NAIGONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Navigation method based on bionic hippocampus cognitive map</title><date>2018-08-03</date><risdate>2018</risdate><abstract>The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108362284A
source esp@cenet
subjects GYROSCOPIC INSTRUMENTS
MEASURING
MEASURING DISTANCES, LEVELS OR BEARINGS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
SURVEYING
TESTING
title Navigation method based on bionic hippocampus cognitive map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUAN%20YUNHE&rft.date=2018-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108362284A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true