Navigation method based on bionic hippocampus cognitive map
The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D informati...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YUAN YUNHE ZHAI YUJIA YU NAIGONG |
description | The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108362284A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108362284A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108362284A3</originalsourceid><addsrcrecordid>eNrjZLD2SyzLTE8syczPU8hNLcnIT1FISixOTVEA8pOAgpnJChmZBQX5yYm5BaXFCsn56XmZJZllqQq5iQU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_QwMLYzMjIwsTRmBg1AL_cL5Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Navigation method based on bionic hippocampus cognitive map</title><source>esp@cenet</source><creator>YUAN YUNHE ; ZHAI YUJIA ; YU NAIGONG</creator><creatorcontrib>YUAN YUNHE ; ZHAI YUJIA ; YU NAIGONG</creatorcontrib><description>The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th</description><language>chi ; eng</language><subject>GYROSCOPIC INSTRUMENTS ; MEASURING ; MEASURING DISTANCES, LEVELS OR BEARINGS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; SURVEYING ; TESTING</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180803&DB=EPODOC&CC=CN&NR=108362284A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180803&DB=EPODOC&CC=CN&NR=108362284A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YUAN YUNHE</creatorcontrib><creatorcontrib>ZHAI YUJIA</creatorcontrib><creatorcontrib>YU NAIGONG</creatorcontrib><title>Navigation method based on bionic hippocampus cognitive map</title><description>The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th</description><subject>GYROSCOPIC INSTRUMENTS</subject><subject>MEASURING</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLD2SyzLTE8syczPU8hNLcnIT1FISixOTVEA8pOAgpnJChmZBQX5yYm5BaXFCsn56XmZJZllqQq5iQU8DKxpiTnFqbxQmptB0c01xNlDN7UgPz61uCAxOTUvtSTe2c_QwMLYzMjIwsTRmBg1AL_cL5Y</recordid><startdate>20180803</startdate><enddate>20180803</enddate><creator>YUAN YUNHE</creator><creator>ZHAI YUJIA</creator><creator>YU NAIGONG</creator><scope>EVB</scope></search><sort><creationdate>20180803</creationdate><title>Navigation method based on bionic hippocampus cognitive map</title><author>YUAN YUNHE ; ZHAI YUJIA ; YU NAIGONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108362284A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>GYROSCOPIC INSTRUMENTS</topic><topic>MEASURING</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>YUAN YUNHE</creatorcontrib><creatorcontrib>ZHAI YUJIA</creatorcontrib><creatorcontrib>YU NAIGONG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YUAN YUNHE</au><au>ZHAI YUJIA</au><au>YU NAIGONG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Navigation method based on bionic hippocampus cognitive map</title><date>2018-08-03</date><risdate>2018</risdate><abstract>The invention relates to a navigation method based on bionic hippocampus cognitive map, which belongs to the field of bionic mobile robot navigation. A cognitive map belongs to a topology map, each node of the cognitive map comprises biological characteristic information, environment RGB-D information, and association information of multiple interdependent nodes. By combining with the cognitive map, a Dijkstra algorithm is used, through an analysis, the various information in each node and a target-heading physical distance are subjected to weighted sum, the algorithm is improved, and a globalpath with maximum characteristic information and shortest physical distance can be obtained. According to inflection point numbers, the node with the most abundant characteristic surrounding the inflection point is found by the local navigation as a terminal point of the local navigation, through SURF image characteristic point extraction, a translation matrix and a rotation matrix between two frames are compared, and th</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN108362284A |
source | esp@cenet |
subjects | GYROSCOPIC INSTRUMENTS MEASURING MEASURING DISTANCES, LEVELS OR BEARINGS NAVIGATION PHOTOGRAMMETRY OR VIDEOGRAMMETRY PHYSICS SURVEYING TESTING |
title | Navigation method based on bionic hippocampus cognitive map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A37%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YUAN%20YUNHE&rft.date=2018-08-03&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108362284A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |