Clustering method based on big data

The invention discloses a clustering method based on big data. The method comprises the steps of segmenting news D to obtain news S; determining whether the news S is the first news, if yes, establishing a new category based on the news S, if not, establishing a VSM vector model for the news S, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MA XIAOXIAO, WEN DACHUAN, WU CHUNCAI, WEN BIN, YAO QINGLIN, YANG SHUHAI, FENG LIANGHUAI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MA XIAOXIAO
WEN DACHUAN
WU CHUNCAI
WEN BIN
YAO QINGLIN
YANG SHUHAI
FENG LIANGHUAI
description The invention discloses a clustering method based on big data. The method comprises the steps of segmenting news D to obtain news S; determining whether the news S is the first news, if yes, establishing a new category based on the news S, if not, establishing a VSM vector model for the news S, and calculating the similarity between the news S and all categories of a cluster center; finding a category C with the greatest similarity with the news S, if the similarity between the news S and the category C is greater than a preset threshold, classifying the news S into the category C, and if thesimilarity is less than the preset threshold, establishing a new category based on the news S; calculating a similarity mean M1 of the news S and other news in the category C, calculating a similaritymean M2 of the other news in the category C and the other news in the cluster center, and if the M1 is greater than the M2, updating the news S to be a new cluster center, otherwise maintaining the cluster center unchanged; d
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN108153818A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN108153818A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN108153818A3</originalsourceid><addsrcrecordid>eNrjZFB2ziktLkktysxLV8hNLcnIT1FISixOTVHIz1NIykxXSEksSeRhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGFoamxhaGFo7GxKgBALjpJfk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Clustering method based on big data</title><source>esp@cenet</source><creator>MA XIAOXIAO ; WEN DACHUAN ; WU CHUNCAI ; WEN BIN ; YAO QINGLIN ; YANG SHUHAI ; FENG LIANGHUAI</creator><creatorcontrib>MA XIAOXIAO ; WEN DACHUAN ; WU CHUNCAI ; WEN BIN ; YAO QINGLIN ; YANG SHUHAI ; FENG LIANGHUAI</creatorcontrib><description>The invention discloses a clustering method based on big data. The method comprises the steps of segmenting news D to obtain news S; determining whether the news S is the first news, if yes, establishing a new category based on the news S, if not, establishing a VSM vector model for the news S, and calculating the similarity between the news S and all categories of a cluster center; finding a category C with the greatest similarity with the news S, if the similarity between the news S and the category C is greater than a preset threshold, classifying the news S into the category C, and if thesimilarity is less than the preset threshold, establishing a new category based on the news S; calculating a similarity mean M1 of the news S and other news in the category C, calculating a similaritymean M2 of the other news in the category C and the other news in the cluster center, and if the M1 is greater than the M2, updating the news S to be a new cluster center, otherwise maintaining the cluster center unchanged; d</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180612&amp;DB=EPODOC&amp;CC=CN&amp;NR=108153818A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180612&amp;DB=EPODOC&amp;CC=CN&amp;NR=108153818A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MA XIAOXIAO</creatorcontrib><creatorcontrib>WEN DACHUAN</creatorcontrib><creatorcontrib>WU CHUNCAI</creatorcontrib><creatorcontrib>WEN BIN</creatorcontrib><creatorcontrib>YAO QINGLIN</creatorcontrib><creatorcontrib>YANG SHUHAI</creatorcontrib><creatorcontrib>FENG LIANGHUAI</creatorcontrib><title>Clustering method based on big data</title><description>The invention discloses a clustering method based on big data. The method comprises the steps of segmenting news D to obtain news S; determining whether the news S is the first news, if yes, establishing a new category based on the news S, if not, establishing a VSM vector model for the news S, and calculating the similarity between the news S and all categories of a cluster center; finding a category C with the greatest similarity with the news S, if the similarity between the news S and the category C is greater than a preset threshold, classifying the news S into the category C, and if thesimilarity is less than the preset threshold, establishing a new category based on the news S; calculating a similarity mean M1 of the news S and other news in the category C, calculating a similaritymean M2 of the other news in the category C and the other news in the cluster center, and if the M1 is greater than the M2, updating the news S to be a new cluster center, otherwise maintaining the cluster center unchanged; d</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB2ziktLkktysxLV8hNLcnIT1FISixOTVHIz1NIykxXSEksSeRhYE1LzClO5YXS3AyKbq4hzh66qQX58anFBYnJqXmpJfHOfoYGFoamxhaGFo7GxKgBALjpJfk</recordid><startdate>20180612</startdate><enddate>20180612</enddate><creator>MA XIAOXIAO</creator><creator>WEN DACHUAN</creator><creator>WU CHUNCAI</creator><creator>WEN BIN</creator><creator>YAO QINGLIN</creator><creator>YANG SHUHAI</creator><creator>FENG LIANGHUAI</creator><scope>EVB</scope></search><sort><creationdate>20180612</creationdate><title>Clustering method based on big data</title><author>MA XIAOXIAO ; WEN DACHUAN ; WU CHUNCAI ; WEN BIN ; YAO QINGLIN ; YANG SHUHAI ; FENG LIANGHUAI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN108153818A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MA XIAOXIAO</creatorcontrib><creatorcontrib>WEN DACHUAN</creatorcontrib><creatorcontrib>WU CHUNCAI</creatorcontrib><creatorcontrib>WEN BIN</creatorcontrib><creatorcontrib>YAO QINGLIN</creatorcontrib><creatorcontrib>YANG SHUHAI</creatorcontrib><creatorcontrib>FENG LIANGHUAI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MA XIAOXIAO</au><au>WEN DACHUAN</au><au>WU CHUNCAI</au><au>WEN BIN</au><au>YAO QINGLIN</au><au>YANG SHUHAI</au><au>FENG LIANGHUAI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Clustering method based on big data</title><date>2018-06-12</date><risdate>2018</risdate><abstract>The invention discloses a clustering method based on big data. The method comprises the steps of segmenting news D to obtain news S; determining whether the news S is the first news, if yes, establishing a new category based on the news S, if not, establishing a VSM vector model for the news S, and calculating the similarity between the news S and all categories of a cluster center; finding a category C with the greatest similarity with the news S, if the similarity between the news S and the category C is greater than a preset threshold, classifying the news S into the category C, and if thesimilarity is less than the preset threshold, establishing a new category based on the news S; calculating a similarity mean M1 of the news S and other news in the category C, calculating a similaritymean M2 of the other news in the category C and the other news in the cluster center, and if the M1 is greater than the M2, updating the news S to be a new cluster center, otherwise maintaining the cluster center unchanged; d</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN108153818A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Clustering method based on big data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MA%20XIAOXIAO&rft.date=2018-06-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN108153818A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true