Substation characteristic analysis method based on multi-element clustering model and two-stage clustering correction algorithm

The invention discloses a substation characteristic analysis method based on a multi-element clustering model and a two-stage clustering correction algorithm. Clustering analysis is an important method for extracting substation characteristics from a lot of load data, but substation loads include va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI CHENGDA, YANG YING, SHANG JIAYI, ZHAN ZHENBIN, ZHOU ZHENGYANG, WU HAO, ZHANG JING, SHI BOLONG, XU XIANGHAI, JIANG ZHENGBANG, SUN WEIZHEN, CHEN YE, YE LIN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI CHENGDA
YANG YING
SHANG JIAYI
ZHAN ZHENBIN
ZHOU ZHENGYANG
WU HAO
ZHANG JING
SHI BOLONG
XU XIANGHAI
JIANG ZHENGBANG
SUN WEIZHEN
CHEN YE
YE LIN
description The invention discloses a substation characteristic analysis method based on a multi-element clustering model and a two-stage clustering correction algorithm. Clustering analysis is an important method for extracting substation characteristics from a lot of load data, but substation loads include various user loads, the characteristics of the substation loads are very complex, if a single daily load curve or a user composition ratio is selected as an index for clustering, other factors can be ignored, and therefore the clustering result is not comprehensive. Thus, the substation characteristicanalysis method based on the multi-element clustering model and the two-stage clustering correction algorithm is provided. Firstly, the daily load curve data is clustered by means of a K-means algorithm, then the two-stage clustering correction algorithm is employed for correcting the clustering result of the daily load curve according to the substation user composition data. The research resultshows that the clustering
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN107977771A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN107977771A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN107977771A3</originalsourceid><addsrcrecordid>eNqNjb0KwkAQhNNYiPoO6wMEDBbBUoJiZaN92OytycH9hNsNYuWre4qFpdNMMd_MzIvnZepEUW0MQAMmJOVkRS0BBnQPsQKedYgGOhQ2kDk_ObUlO_YcFMhN8u6EHnw07HLPgN5jmWd7_o0ppsT0uULXx2R18MtidkMnvPr6olgfD9fmVPIYW5YRiQNr25yrTb2rs6r99h_mBcqFSng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Substation characteristic analysis method based on multi-element clustering model and two-stage clustering correction algorithm</title><source>esp@cenet</source><creator>LI CHENGDA ; YANG YING ; SHANG JIAYI ; ZHAN ZHENBIN ; ZHOU ZHENGYANG ; WU HAO ; ZHANG JING ; SHI BOLONG ; XU XIANGHAI ; JIANG ZHENGBANG ; SUN WEIZHEN ; CHEN YE ; YE LIN</creator><creatorcontrib>LI CHENGDA ; YANG YING ; SHANG JIAYI ; ZHAN ZHENBIN ; ZHOU ZHENGYANG ; WU HAO ; ZHANG JING ; SHI BOLONG ; XU XIANGHAI ; JIANG ZHENGBANG ; SUN WEIZHEN ; CHEN YE ; YE LIN</creatorcontrib><description>The invention discloses a substation characteristic analysis method based on a multi-element clustering model and a two-stage clustering correction algorithm. Clustering analysis is an important method for extracting substation characteristics from a lot of load data, but substation loads include various user loads, the characteristics of the substation loads are very complex, if a single daily load curve or a user composition ratio is selected as an index for clustering, other factors can be ignored, and therefore the clustering result is not comprehensive. Thus, the substation characteristicanalysis method based on the multi-element clustering model and the two-stage clustering correction algorithm is provided. Firstly, the daily load curve data is clustered by means of a K-means algorithm, then the two-stage clustering correction algorithm is employed for correcting the clustering result of the daily load curve according to the substation user composition data. The research resultshows that the clustering</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180501&amp;DB=EPODOC&amp;CC=CN&amp;NR=107977771A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180501&amp;DB=EPODOC&amp;CC=CN&amp;NR=107977771A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHENGDA</creatorcontrib><creatorcontrib>YANG YING</creatorcontrib><creatorcontrib>SHANG JIAYI</creatorcontrib><creatorcontrib>ZHAN ZHENBIN</creatorcontrib><creatorcontrib>ZHOU ZHENGYANG</creatorcontrib><creatorcontrib>WU HAO</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><creatorcontrib>SHI BOLONG</creatorcontrib><creatorcontrib>XU XIANGHAI</creatorcontrib><creatorcontrib>JIANG ZHENGBANG</creatorcontrib><creatorcontrib>SUN WEIZHEN</creatorcontrib><creatorcontrib>CHEN YE</creatorcontrib><creatorcontrib>YE LIN</creatorcontrib><title>Substation characteristic analysis method based on multi-element clustering model and two-stage clustering correction algorithm</title><description>The invention discloses a substation characteristic analysis method based on a multi-element clustering model and a two-stage clustering correction algorithm. Clustering analysis is an important method for extracting substation characteristics from a lot of load data, but substation loads include various user loads, the characteristics of the substation loads are very complex, if a single daily load curve or a user composition ratio is selected as an index for clustering, other factors can be ignored, and therefore the clustering result is not comprehensive. Thus, the substation characteristicanalysis method based on the multi-element clustering model and the two-stage clustering correction algorithm is provided. Firstly, the daily load curve data is clustered by means of a K-means algorithm, then the two-stage clustering correction algorithm is employed for correcting the clustering result of the daily load curve according to the substation user composition data. The research resultshows that the clustering</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjb0KwkAQhNNYiPoO6wMEDBbBUoJiZaN92OytycH9hNsNYuWre4qFpdNMMd_MzIvnZepEUW0MQAMmJOVkRS0BBnQPsQKedYgGOhQ2kDk_ObUlO_YcFMhN8u6EHnw07HLPgN5jmWd7_o0ppsT0uULXx2R18MtidkMnvPr6olgfD9fmVPIYW5YRiQNr25yrTb2rs6r99h_mBcqFSng</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>LI CHENGDA</creator><creator>YANG YING</creator><creator>SHANG JIAYI</creator><creator>ZHAN ZHENBIN</creator><creator>ZHOU ZHENGYANG</creator><creator>WU HAO</creator><creator>ZHANG JING</creator><creator>SHI BOLONG</creator><creator>XU XIANGHAI</creator><creator>JIANG ZHENGBANG</creator><creator>SUN WEIZHEN</creator><creator>CHEN YE</creator><creator>YE LIN</creator><scope>EVB</scope></search><sort><creationdate>20180501</creationdate><title>Substation characteristic analysis method based on multi-element clustering model and two-stage clustering correction algorithm</title><author>LI CHENGDA ; YANG YING ; SHANG JIAYI ; ZHAN ZHENBIN ; ZHOU ZHENGYANG ; WU HAO ; ZHANG JING ; SHI BOLONG ; XU XIANGHAI ; JIANG ZHENGBANG ; SUN WEIZHEN ; CHEN YE ; YE LIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN107977771A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHENGDA</creatorcontrib><creatorcontrib>YANG YING</creatorcontrib><creatorcontrib>SHANG JIAYI</creatorcontrib><creatorcontrib>ZHAN ZHENBIN</creatorcontrib><creatorcontrib>ZHOU ZHENGYANG</creatorcontrib><creatorcontrib>WU HAO</creatorcontrib><creatorcontrib>ZHANG JING</creatorcontrib><creatorcontrib>SHI BOLONG</creatorcontrib><creatorcontrib>XU XIANGHAI</creatorcontrib><creatorcontrib>JIANG ZHENGBANG</creatorcontrib><creatorcontrib>SUN WEIZHEN</creatorcontrib><creatorcontrib>CHEN YE</creatorcontrib><creatorcontrib>YE LIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHENGDA</au><au>YANG YING</au><au>SHANG JIAYI</au><au>ZHAN ZHENBIN</au><au>ZHOU ZHENGYANG</au><au>WU HAO</au><au>ZHANG JING</au><au>SHI BOLONG</au><au>XU XIANGHAI</au><au>JIANG ZHENGBANG</au><au>SUN WEIZHEN</au><au>CHEN YE</au><au>YE LIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Substation characteristic analysis method based on multi-element clustering model and two-stage clustering correction algorithm</title><date>2018-05-01</date><risdate>2018</risdate><abstract>The invention discloses a substation characteristic analysis method based on a multi-element clustering model and a two-stage clustering correction algorithm. Clustering analysis is an important method for extracting substation characteristics from a lot of load data, but substation loads include various user loads, the characteristics of the substation loads are very complex, if a single daily load curve or a user composition ratio is selected as an index for clustering, other factors can be ignored, and therefore the clustering result is not comprehensive. Thus, the substation characteristicanalysis method based on the multi-element clustering model and the two-stage clustering correction algorithm is provided. Firstly, the daily load curve data is clustered by means of a K-means algorithm, then the two-stage clustering correction algorithm is employed for correcting the clustering result of the daily load curve according to the substation user composition data. The research resultshows that the clustering</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN107977771A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR
title Substation characteristic analysis method based on multi-element clustering model and two-stage clustering correction algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A08%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHENGDA&rft.date=2018-05-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN107977771A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true