K-MP compressed sensing rapid reconstruction method

The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU JIASUI, HE ZHAOSHUI, HUANG HONGSHENG, YANG SENQUAN, HUANG SHIFENG, XIE SHENGLI, LI BINGCONG, LYU JUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU JIASUI
HE ZHAOSHUI
HUANG HONGSHENG
YANG SENQUAN
HUANG SHIFENG
XIE SHENGLI
LI BINGCONG
LYU JUN
description The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN107528595A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN107528595A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN107528595A3</originalsourceid><addsrcrecordid>eNrjZDD21vUNUEjOzy0oSi0uTk1RKE7NK87MS1coSizITFEoSk3OzysuKSpNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBuamRhamlqaOxsSoAQD-lCyi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>K-MP compressed sensing rapid reconstruction method</title><source>esp@cenet</source><creator>LIU JIASUI ; HE ZHAOSHUI ; HUANG HONGSHENG ; YANG SENQUAN ; HUANG SHIFENG ; XIE SHENGLI ; LI BINGCONG ; LYU JUN</creator><creatorcontrib>LIU JIASUI ; HE ZHAOSHUI ; HUANG HONGSHENG ; YANG SENQUAN ; HUANG SHIFENG ; XIE SHENGLI ; LI BINGCONG ; LYU JUN</creatorcontrib><description>The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment</description><language>chi ; eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; CODE CONVERSION IN GENERAL ; CODING ; DECODING ; ELECTRICITY</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171229&amp;DB=EPODOC&amp;CC=CN&amp;NR=107528595A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171229&amp;DB=EPODOC&amp;CC=CN&amp;NR=107528595A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIASUI</creatorcontrib><creatorcontrib>HE ZHAOSHUI</creatorcontrib><creatorcontrib>HUANG HONGSHENG</creatorcontrib><creatorcontrib>YANG SENQUAN</creatorcontrib><creatorcontrib>HUANG SHIFENG</creatorcontrib><creatorcontrib>XIE SHENGLI</creatorcontrib><creatorcontrib>LI BINGCONG</creatorcontrib><creatorcontrib>LYU JUN</creatorcontrib><title>K-MP compressed sensing rapid reconstruction method</title><description>The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>CODE CONVERSION IN GENERAL</subject><subject>CODING</subject><subject>DECODING</subject><subject>ELECTRICITY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD21vUNUEjOzy0oSi0uTk1RKE7NK87MS1coSizITFEoSk3OzysuKSpNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBuamRhamlqaOxsSoAQD-lCyi</recordid><startdate>20171229</startdate><enddate>20171229</enddate><creator>LIU JIASUI</creator><creator>HE ZHAOSHUI</creator><creator>HUANG HONGSHENG</creator><creator>YANG SENQUAN</creator><creator>HUANG SHIFENG</creator><creator>XIE SHENGLI</creator><creator>LI BINGCONG</creator><creator>LYU JUN</creator><scope>EVB</scope></search><sort><creationdate>20171229</creationdate><title>K-MP compressed sensing rapid reconstruction method</title><author>LIU JIASUI ; HE ZHAOSHUI ; HUANG HONGSHENG ; YANG SENQUAN ; HUANG SHIFENG ; XIE SHENGLI ; LI BINGCONG ; LYU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN107528595A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>CODE CONVERSION IN GENERAL</topic><topic>CODING</topic><topic>DECODING</topic><topic>ELECTRICITY</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIASUI</creatorcontrib><creatorcontrib>HE ZHAOSHUI</creatorcontrib><creatorcontrib>HUANG HONGSHENG</creatorcontrib><creatorcontrib>YANG SENQUAN</creatorcontrib><creatorcontrib>HUANG SHIFENG</creatorcontrib><creatorcontrib>XIE SHENGLI</creatorcontrib><creatorcontrib>LI BINGCONG</creatorcontrib><creatorcontrib>LYU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIASUI</au><au>HE ZHAOSHUI</au><au>HUANG HONGSHENG</au><au>YANG SENQUAN</au><au>HUANG SHIFENG</au><au>XIE SHENGLI</au><au>LI BINGCONG</au><au>LYU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>K-MP compressed sensing rapid reconstruction method</title><date>2017-12-29</date><risdate>2017</risdate><abstract>The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN107528595A
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
CODE CONVERSION IN GENERAL
CODING
DECODING
ELECTRICITY
title K-MP compressed sensing rapid reconstruction method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T16%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIASUI&rft.date=2017-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN107528595A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true