K-MP compressed sensing rapid reconstruction method
The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less th...
Gespeichert in:
Hauptverfasser: | , , , , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LIU JIASUI HE ZHAOSHUI HUANG HONGSHENG YANG SENQUAN HUANG SHIFENG XIE SHENGLI LI BINGCONG LYU JUN |
description | The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN107528595A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN107528595A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN107528595A3</originalsourceid><addsrcrecordid>eNrjZDD21vUNUEjOzy0oSi0uTk1RKE7NK87MS1coSizITFEoSk3OzysuKSpNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBuamRhamlqaOxsSoAQD-lCyi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>K-MP compressed sensing rapid reconstruction method</title><source>esp@cenet</source><creator>LIU JIASUI ; HE ZHAOSHUI ; HUANG HONGSHENG ; YANG SENQUAN ; HUANG SHIFENG ; XIE SHENGLI ; LI BINGCONG ; LYU JUN</creator><creatorcontrib>LIU JIASUI ; HE ZHAOSHUI ; HUANG HONGSHENG ; YANG SENQUAN ; HUANG SHIFENG ; XIE SHENGLI ; LI BINGCONG ; LYU JUN</creatorcontrib><description>The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment</description><language>chi ; eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; CODE CONVERSION IN GENERAL ; CODING ; DECODING ; ELECTRICITY</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171229&DB=EPODOC&CC=CN&NR=107528595A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,782,887,25573,76557</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20171229&DB=EPODOC&CC=CN&NR=107528595A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU JIASUI</creatorcontrib><creatorcontrib>HE ZHAOSHUI</creatorcontrib><creatorcontrib>HUANG HONGSHENG</creatorcontrib><creatorcontrib>YANG SENQUAN</creatorcontrib><creatorcontrib>HUANG SHIFENG</creatorcontrib><creatorcontrib>XIE SHENGLI</creatorcontrib><creatorcontrib>LI BINGCONG</creatorcontrib><creatorcontrib>LYU JUN</creatorcontrib><title>K-MP compressed sensing rapid reconstruction method</title><description>The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>CODE CONVERSION IN GENERAL</subject><subject>CODING</subject><subject>DECODING</subject><subject>ELECTRICITY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDD21vUNUEjOzy0oSi0uTk1RKE7NK87MS1coSizITFEoSk3OzysuKSpNLsnMz1PITS3JyE_hYWBNS8wpTuWF0twMim6uIc4euqkF-fGpxQWJyal5qSXxzn6GBuamRhamlqaOxsSoAQD-lCyi</recordid><startdate>20171229</startdate><enddate>20171229</enddate><creator>LIU JIASUI</creator><creator>HE ZHAOSHUI</creator><creator>HUANG HONGSHENG</creator><creator>YANG SENQUAN</creator><creator>HUANG SHIFENG</creator><creator>XIE SHENGLI</creator><creator>LI BINGCONG</creator><creator>LYU JUN</creator><scope>EVB</scope></search><sort><creationdate>20171229</creationdate><title>K-MP compressed sensing rapid reconstruction method</title><author>LIU JIASUI ; HE ZHAOSHUI ; HUANG HONGSHENG ; YANG SENQUAN ; HUANG SHIFENG ; XIE SHENGLI ; LI BINGCONG ; LYU JUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN107528595A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>CODE CONVERSION IN GENERAL</topic><topic>CODING</topic><topic>DECODING</topic><topic>ELECTRICITY</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU JIASUI</creatorcontrib><creatorcontrib>HE ZHAOSHUI</creatorcontrib><creatorcontrib>HUANG HONGSHENG</creatorcontrib><creatorcontrib>YANG SENQUAN</creatorcontrib><creatorcontrib>HUANG SHIFENG</creatorcontrib><creatorcontrib>XIE SHENGLI</creatorcontrib><creatorcontrib>LI BINGCONG</creatorcontrib><creatorcontrib>LYU JUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU JIASUI</au><au>HE ZHAOSHUI</au><au>HUANG HONGSHENG</au><au>YANG SENQUAN</au><au>HUANG SHIFENG</au><au>XIE SHENGLI</au><au>LI BINGCONG</au><au>LYU JUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>K-MP compressed sensing rapid reconstruction method</title><date>2017-12-29</date><risdate>2017</risdate><abstract>The invention discloses a K-MP (Matching Pursuit) compressed sensing rapid reconstruction method. During compressed sensing, a sparse signal is reconstructed from an underdetermined linear system y=phix+e, wherein (x is an element of a set R) is a signal which has only K nonzero values (K is less than n); (y is an element of a set R) is an observation signal; (phi is an element of a set R (m is to be shifted to the left of n) is a sensing matrix; and (e is an element of a set R is quantizing noise. Common compressed sensing reconstruction algorithms comprise Basis Pursuit, Orthogonal Matching Pursuit and the like. The K-MP algorithm provided by the invention does not need any iteration process of an orthogonal matching pursuit algorithm, does not need to be converted into a complex high-dimensional model, and is simple in process and high in speed. The finite equidistant distribution of the method is proved theoretically, and the converging speed of the method is explained through a numerical value experiment</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN107528595A |
source | esp@cenet |
subjects | BASIC ELECTRONIC CIRCUITRY CODE CONVERSION IN GENERAL CODING DECODING ELECTRICITY |
title | K-MP compressed sensing rapid reconstruction method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T16%3A35%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU%20JIASUI&rft.date=2017-12-29&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN107528595A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |