Target identification method, target identification apparatus, terminal device and target identification system

The invention provides an online automatic deep learning-based target identification method and apparatus, a terminal device and a target identification system. The method comprises the steps of collecting image data in real time; by utilizing a stored first classifier, performing target identificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: DAI YIRUO
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DAI YIRUO
description The invention provides an online automatic deep learning-based target identification method and apparatus, a terminal device and a target identification system. The method comprises the steps of collecting image data in real time; by utilizing a stored first classifier, performing target identification on the collected image data to generate image data with a category label, wherein the category label comprises a target category and a target posterior probability; when the target posterior probability meets a predetermined storage condition, performing storage as a training sample according to the target category; and when a predetermined starting condition is met, starting online deep learning processing to obtain a third classifier, and updating the stored first classifier by using the obtained third classifier. By adopting the method, high-accuracy target identification can be realized. 本发明提供了基于在线自动深度学习的目标识别方法、目标识别装置、终端设备和目标识别系统。其中,该方法包括:实时采集图像数据;利用存储的第分类器,对采集到的图像数据进行目标识别,以生成带有类别标签的图像数据,类别标签包含目标类别以及目标后验概率;
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN107305636A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN107305636A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN107305636A3</originalsourceid><addsrcrecordid>eNqNi70KwjAURrM4iPoOca9QCbazlIqTU_dySb7qheaH5Cr49jo4Kjid4ZyzVHGgfIVodgjCE1sSjkF7yC26SstXSylRJrmXd4DsOdCsHR5soSm4H1N5FoFfq8VEc8Hmw5XanvqhO--Q4oiSyCJAxu6yr1tTHxrTHM0_zQuA10PV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Target identification method, target identification apparatus, terminal device and target identification system</title><source>esp@cenet</source><creator>DAI YIRUO</creator><creatorcontrib>DAI YIRUO</creatorcontrib><description>The invention provides an online automatic deep learning-based target identification method and apparatus, a terminal device and a target identification system. The method comprises the steps of collecting image data in real time; by utilizing a stored first classifier, performing target identification on the collected image data to generate image data with a category label, wherein the category label comprises a target category and a target posterior probability; when the target posterior probability meets a predetermined storage condition, performing storage as a training sample according to the target category; and when a predetermined starting condition is met, starting online deep learning processing to obtain a third classifier, and updating the stored first classifier by using the obtained third classifier. By adopting the method, high-accuracy target identification can be realized. 本发明提供了基于在线自动深度学习的目标识别方法、目标识别装置、终端设备和目标识别系统。其中,该方法包括:实时采集图像数据;利用存储的第分类器,对采集到的图像数据进行目标识别,以生成带有类别标签的图像数据,类别标签包含目标类别以及目标后验概率;</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171031&amp;DB=EPODOC&amp;CC=CN&amp;NR=107305636A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25568,76551</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20171031&amp;DB=EPODOC&amp;CC=CN&amp;NR=107305636A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAI YIRUO</creatorcontrib><title>Target identification method, target identification apparatus, terminal device and target identification system</title><description>The invention provides an online automatic deep learning-based target identification method and apparatus, a terminal device and a target identification system. The method comprises the steps of collecting image data in real time; by utilizing a stored first classifier, performing target identification on the collected image data to generate image data with a category label, wherein the category label comprises a target category and a target posterior probability; when the target posterior probability meets a predetermined storage condition, performing storage as a training sample according to the target category; and when a predetermined starting condition is met, starting online deep learning processing to obtain a third classifier, and updating the stored first classifier by using the obtained third classifier. By adopting the method, high-accuracy target identification can be realized. 本发明提供了基于在线自动深度学习的目标识别方法、目标识别装置、终端设备和目标识别系统。其中,该方法包括:实时采集图像数据;利用存储的第分类器,对采集到的图像数据进行目标识别,以生成带有类别标签的图像数据,类别标签包含目标类别以及目标后验概率;</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi70KwjAURrM4iPoOca9QCbazlIqTU_dySb7qheaH5Cr49jo4Kjid4ZyzVHGgfIVodgjCE1sSjkF7yC26SstXSylRJrmXd4DsOdCsHR5soSm4H1N5FoFfq8VEc8Hmw5XanvqhO--Q4oiSyCJAxu6yr1tTHxrTHM0_zQuA10PV</recordid><startdate>20171031</startdate><enddate>20171031</enddate><creator>DAI YIRUO</creator><scope>EVB</scope></search><sort><creationdate>20171031</creationdate><title>Target identification method, target identification apparatus, terminal device and target identification system</title><author>DAI YIRUO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN107305636A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>DAI YIRUO</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAI YIRUO</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Target identification method, target identification apparatus, terminal device and target identification system</title><date>2017-10-31</date><risdate>2017</risdate><abstract>The invention provides an online automatic deep learning-based target identification method and apparatus, a terminal device and a target identification system. The method comprises the steps of collecting image data in real time; by utilizing a stored first classifier, performing target identification on the collected image data to generate image data with a category label, wherein the category label comprises a target category and a target posterior probability; when the target posterior probability meets a predetermined storage condition, performing storage as a training sample according to the target category; and when a predetermined starting condition is met, starting online deep learning processing to obtain a third classifier, and updating the stored first classifier by using the obtained third classifier. By adopting the method, high-accuracy target identification can be realized. 本发明提供了基于在线自动深度学习的目标识别方法、目标识别装置、终端设备和目标识别系统。其中,该方法包括:实时采集图像数据;利用存储的第分类器,对采集到的图像数据进行目标识别,以生成带有类别标签的图像数据,类别标签包含目标类别以及目标后验概率;</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN107305636A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Target identification method, target identification apparatus, terminal device and target identification system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T01%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAI%20YIRUO&rft.date=2017-10-31&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN107305636A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true