Method for predicting remaining life of multi-source data fused aero-turbofan engine

The invention discloses a method for predicting the remaining life of a multi-source data driven aero-turbofan engine. According to the method, the remaining life of the engine is predicted by completely utilizing monitoring data acquired by an engine sensor. The method comprises four steps of estim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI CHANGJUN, BAO RONGJING, WU SISI, ZHAO GUANGSHE, RONG HAIJUN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI CHANGJUN
BAO RONGJING
WU SISI
ZHAO GUANGSHE
RONG HAIJUN
description The invention discloses a method for predicting the remaining life of a multi-source data driven aero-turbofan engine. According to the method, the remaining life of the engine is predicted by completely utilizing monitoring data acquired by an engine sensor. The method comprises four steps of estimating multi-source monitoring data fusion and failure threshold values; modeling the degradation process of the engine and estimating parameters; describing the remaining life of the engine; and predicting the remaining life. Compared with the prior art, the method has the following advantages: multi-source monitoring data is fused on the basis of common main component analysis and Euclidean distance to extract the health index and the failure threshold value representing the operating state of the engine and solve the problem that monitoring data information in the traditional prediction method is utilized incompletely; the Wiener process with nonlinear drift is established to represent the aero-engine degradation
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN107153759A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN107153759A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN107153759A3</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEuDqLew_ECApZSiqMUxUWn7uWYfKmBNCfk5_5F8AKc3md4t830QHmLISuJYoJxuriwUMLKLnzlnQWJpbX64lSWmjTIcGGyNcMQI4kqNb3EciCExQXsm41ln3H4ddccb9dpvCtEmZEjawSUeXy2p6Htu6E_X7p_ng-SwDjM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for predicting remaining life of multi-source data fused aero-turbofan engine</title><source>esp@cenet</source><creator>LI CHANGJUN ; BAO RONGJING ; WU SISI ; ZHAO GUANGSHE ; RONG HAIJUN</creator><creatorcontrib>LI CHANGJUN ; BAO RONGJING ; WU SISI ; ZHAO GUANGSHE ; RONG HAIJUN</creatorcontrib><description>The invention discloses a method for predicting the remaining life of a multi-source data driven aero-turbofan engine. According to the method, the remaining life of the engine is predicted by completely utilizing monitoring data acquired by an engine sensor. The method comprises four steps of estimating multi-source monitoring data fusion and failure threshold values; modeling the degradation process of the engine and estimating parameters; describing the remaining life of the engine; and predicting the remaining life. Compared with the prior art, the method has the following advantages: multi-source monitoring data is fused on the basis of common main component analysis and Euclidean distance to extract the health index and the failure threshold value representing the operating state of the engine and solve the problem that monitoring data information in the traditional prediction method is utilized incompletely; the Wiener process with nonlinear drift is established to represent the aero-engine degradation</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170912&amp;DB=EPODOC&amp;CC=CN&amp;NR=107153759A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170912&amp;DB=EPODOC&amp;CC=CN&amp;NR=107153759A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI CHANGJUN</creatorcontrib><creatorcontrib>BAO RONGJING</creatorcontrib><creatorcontrib>WU SISI</creatorcontrib><creatorcontrib>ZHAO GUANGSHE</creatorcontrib><creatorcontrib>RONG HAIJUN</creatorcontrib><title>Method for predicting remaining life of multi-source data fused aero-turbofan engine</title><description>The invention discloses a method for predicting the remaining life of a multi-source data driven aero-turbofan engine. According to the method, the remaining life of the engine is predicted by completely utilizing monitoring data acquired by an engine sensor. The method comprises four steps of estimating multi-source monitoring data fusion and failure threshold values; modeling the degradation process of the engine and estimating parameters; describing the remaining life of the engine; and predicting the remaining life. Compared with the prior art, the method has the following advantages: multi-source monitoring data is fused on the basis of common main component analysis and Euclidean distance to extract the health index and the failure threshold value representing the operating state of the engine and solve the problem that monitoring data information in the traditional prediction method is utilized incompletely; the Wiener process with nonlinear drift is established to represent the aero-engine degradation</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0KwjAUhuEuDqLew_ECApZSiqMUxUWn7uWYfKmBNCfk5_5F8AKc3md4t830QHmLISuJYoJxuriwUMLKLnzlnQWJpbX64lSWmjTIcGGyNcMQI4kqNb3EciCExQXsm41ln3H4ddccb9dpvCtEmZEjawSUeXy2p6Htu6E_X7p_ng-SwDjM</recordid><startdate>20170912</startdate><enddate>20170912</enddate><creator>LI CHANGJUN</creator><creator>BAO RONGJING</creator><creator>WU SISI</creator><creator>ZHAO GUANGSHE</creator><creator>RONG HAIJUN</creator><scope>EVB</scope></search><sort><creationdate>20170912</creationdate><title>Method for predicting remaining life of multi-source data fused aero-turbofan engine</title><author>LI CHANGJUN ; BAO RONGJING ; WU SISI ; ZHAO GUANGSHE ; RONG HAIJUN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN107153759A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>LI CHANGJUN</creatorcontrib><creatorcontrib>BAO RONGJING</creatorcontrib><creatorcontrib>WU SISI</creatorcontrib><creatorcontrib>ZHAO GUANGSHE</creatorcontrib><creatorcontrib>RONG HAIJUN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI CHANGJUN</au><au>BAO RONGJING</au><au>WU SISI</au><au>ZHAO GUANGSHE</au><au>RONG HAIJUN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for predicting remaining life of multi-source data fused aero-turbofan engine</title><date>2017-09-12</date><risdate>2017</risdate><abstract>The invention discloses a method for predicting the remaining life of a multi-source data driven aero-turbofan engine. According to the method, the remaining life of the engine is predicted by completely utilizing monitoring data acquired by an engine sensor. The method comprises four steps of estimating multi-source monitoring data fusion and failure threshold values; modeling the degradation process of the engine and estimating parameters; describing the remaining life of the engine; and predicting the remaining life. Compared with the prior art, the method has the following advantages: multi-source monitoring data is fused on the basis of common main component analysis and Euclidean distance to extract the health index and the failure threshold value representing the operating state of the engine and solve the problem that monitoring data information in the traditional prediction method is utilized incompletely; the Wiener process with nonlinear drift is established to represent the aero-engine degradation</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN107153759A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Method for predicting remaining life of multi-source data fused aero-turbofan engine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20CHANGJUN&rft.date=2017-09-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN107153759A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true