Cross section fitting method for combined model tree

The invention discloses a cross section fitting method for a combined model tree. The method comprises the following steps of 1), establishing a cross section expression: expanding the cross section expression into a principal term and multiple sub-terms according to cross section state parameter co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: JU HAITAO, LI XIANGYANG, ZHAO WENBO, XIA BANGYANG, GONG ZHAOHU, WANG LIANGZI, SUN WEI, LI QING, HUANG SHI'EN, YU YINGRUI, CHAI XIAOMING, FANG HAOYU
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JU HAITAO
LI XIANGYANG
ZHAO WENBO
XIA BANGYANG
GONG ZHAOHU
WANG LIANGZI
SUN WEI
LI QING
HUANG SHI'EN
YU YINGRUI
CHAI XIAOMING
FANG HAOYU
description The invention discloses a cross section fitting method for a combined model tree. The method comprises the following steps of 1), establishing a cross section expression: expanding the cross section expression into a principal term and multiple sub-terms according to cross section state parameter combinations; and 2), performing cross section fitting: performing fitting and pruning on the principal term and the sub-terms by adopting a model tree method, wherein only the fuel consumption is selected as a classifiable variable in a calculation process of the model tree method, and a fitting polynomial contains coupling quadratic terms of state parameters. According to the method, a dependency relationship between the cross section and the state parameters is considered when the cross section expression is established; the fitting and pruning are performed through the model tree method, so that the fitting precision can be ensured, the storage capacity can be reduced, and the generalization capacity can be impro
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN107066756A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN107066756A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN107066756A3</originalsourceid><addsrcrecordid>eNrjZDBxLsovLlYoTk0uyczPU0jLLCnJzEtXyE0tychPUUjLL1JIzs9NysxLTVHIzU9JzVEoKUpN5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hgbmBmZm5qZmjsbEqAEAL8ksxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Cross section fitting method for combined model tree</title><source>esp@cenet</source><creator>JU HAITAO ; LI XIANGYANG ; ZHAO WENBO ; XIA BANGYANG ; GONG ZHAOHU ; WANG LIANGZI ; SUN WEI ; LI QING ; HUANG SHI'EN ; YU YINGRUI ; CHAI XIAOMING ; FANG HAOYU</creator><creatorcontrib>JU HAITAO ; LI XIANGYANG ; ZHAO WENBO ; XIA BANGYANG ; GONG ZHAOHU ; WANG LIANGZI ; SUN WEI ; LI QING ; HUANG SHI'EN ; YU YINGRUI ; CHAI XIAOMING ; FANG HAOYU</creatorcontrib><description>The invention discloses a cross section fitting method for a combined model tree. The method comprises the following steps of 1), establishing a cross section expression: expanding the cross section expression into a principal term and multiple sub-terms according to cross section state parameter combinations; and 2), performing cross section fitting: performing fitting and pruning on the principal term and the sub-terms by adopting a model tree method, wherein only the fuel consumption is selected as a classifiable variable in a calculation process of the model tree method, and a fitting polynomial contains coupling quadratic terms of state parameters. According to the method, a dependency relationship between the cross section and the state parameters is considered when the cross section expression is established; the fitting and pruning are performed through the model tree method, so that the fitting precision can be ensured, the storage capacity can be reduced, and the generalization capacity can be impro</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170818&amp;DB=EPODOC&amp;CC=CN&amp;NR=107066756A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170818&amp;DB=EPODOC&amp;CC=CN&amp;NR=107066756A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JU HAITAO</creatorcontrib><creatorcontrib>LI XIANGYANG</creatorcontrib><creatorcontrib>ZHAO WENBO</creatorcontrib><creatorcontrib>XIA BANGYANG</creatorcontrib><creatorcontrib>GONG ZHAOHU</creatorcontrib><creatorcontrib>WANG LIANGZI</creatorcontrib><creatorcontrib>SUN WEI</creatorcontrib><creatorcontrib>LI QING</creatorcontrib><creatorcontrib>HUANG SHI'EN</creatorcontrib><creatorcontrib>YU YINGRUI</creatorcontrib><creatorcontrib>CHAI XIAOMING</creatorcontrib><creatorcontrib>FANG HAOYU</creatorcontrib><title>Cross section fitting method for combined model tree</title><description>The invention discloses a cross section fitting method for a combined model tree. The method comprises the following steps of 1), establishing a cross section expression: expanding the cross section expression into a principal term and multiple sub-terms according to cross section state parameter combinations; and 2), performing cross section fitting: performing fitting and pruning on the principal term and the sub-terms by adopting a model tree method, wherein only the fuel consumption is selected as a classifiable variable in a calculation process of the model tree method, and a fitting polynomial contains coupling quadratic terms of state parameters. According to the method, a dependency relationship between the cross section and the state parameters is considered when the cross section expression is established; the fitting and pruning are performed through the model tree method, so that the fitting precision can be ensured, the storage capacity can be reduced, and the generalization capacity can be impro</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDBxLsovLlYoTk0uyczPU0jLLCnJzEtXyE0tychPUUjLL1JIzs9NysxLTVHIzU9JzVEoKUpN5WFgTUvMKU7lhdLcDIpuriHOHrqpBfnxqcUFicmpeakl8c5-hgbmBmZm5qZmjsbEqAEAL8ksxQ</recordid><startdate>20170818</startdate><enddate>20170818</enddate><creator>JU HAITAO</creator><creator>LI XIANGYANG</creator><creator>ZHAO WENBO</creator><creator>XIA BANGYANG</creator><creator>GONG ZHAOHU</creator><creator>WANG LIANGZI</creator><creator>SUN WEI</creator><creator>LI QING</creator><creator>HUANG SHI'EN</creator><creator>YU YINGRUI</creator><creator>CHAI XIAOMING</creator><creator>FANG HAOYU</creator><scope>EVB</scope></search><sort><creationdate>20170818</creationdate><title>Cross section fitting method for combined model tree</title><author>JU HAITAO ; LI XIANGYANG ; ZHAO WENBO ; XIA BANGYANG ; GONG ZHAOHU ; WANG LIANGZI ; SUN WEI ; LI QING ; HUANG SHI'EN ; YU YINGRUI ; CHAI XIAOMING ; FANG HAOYU</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN107066756A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>JU HAITAO</creatorcontrib><creatorcontrib>LI XIANGYANG</creatorcontrib><creatorcontrib>ZHAO WENBO</creatorcontrib><creatorcontrib>XIA BANGYANG</creatorcontrib><creatorcontrib>GONG ZHAOHU</creatorcontrib><creatorcontrib>WANG LIANGZI</creatorcontrib><creatorcontrib>SUN WEI</creatorcontrib><creatorcontrib>LI QING</creatorcontrib><creatorcontrib>HUANG SHI'EN</creatorcontrib><creatorcontrib>YU YINGRUI</creatorcontrib><creatorcontrib>CHAI XIAOMING</creatorcontrib><creatorcontrib>FANG HAOYU</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JU HAITAO</au><au>LI XIANGYANG</au><au>ZHAO WENBO</au><au>XIA BANGYANG</au><au>GONG ZHAOHU</au><au>WANG LIANGZI</au><au>SUN WEI</au><au>LI QING</au><au>HUANG SHI'EN</au><au>YU YINGRUI</au><au>CHAI XIAOMING</au><au>FANG HAOYU</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Cross section fitting method for combined model tree</title><date>2017-08-18</date><risdate>2017</risdate><abstract>The invention discloses a cross section fitting method for a combined model tree. The method comprises the following steps of 1), establishing a cross section expression: expanding the cross section expression into a principal term and multiple sub-terms according to cross section state parameter combinations; and 2), performing cross section fitting: performing fitting and pruning on the principal term and the sub-terms by adopting a model tree method, wherein only the fuel consumption is selected as a classifiable variable in a calculation process of the model tree method, and a fitting polynomial contains coupling quadratic terms of state parameters. According to the method, a dependency relationship between the cross section and the state parameters is considered when the cross section expression is established; the fitting and pruning are performed through the model tree method, so that the fitting precision can be ensured, the storage capacity can be reduced, and the generalization capacity can be impro</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN107066756A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Cross section fitting method for combined model tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A59%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JU%20HAITAO&rft.date=2017-08-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN107066756A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true