Degradation model and group sparse representation-based foggy day image restoration method

The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG XIN, WANG HUIBIN, LYU GUOFANG, XIONG XINGNAN, ZHU XINGCHENG
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG XIN
WANG HUIBIN
LYU GUOFANG
XIONG XINGNAN
ZHU XINGCHENG
description The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106683055A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106683055A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106683055A3</originalsourceid><addsrcrecordid>eNqNzD0KwkAQhuFtLES9w3iAQCQk2EpUrKysbMLoftkEkp1ldi1ye3_IAaze5uFdmvsRTtly6sXTKBYDsbfkVF6BYmCNIEVQRPj0U9mDIyy14txElifqR3ZfFJPo_EHqxK7NouUhYjN3Zbbn062-ZAjS4PN-wiM19XWXV9W-yMvyUPxj3moSO50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Degradation model and group sparse representation-based foggy day image restoration method</title><source>esp@cenet</source><creator>WANG XIN ; WANG HUIBIN ; LYU GUOFANG ; XIONG XINGNAN ; ZHU XINGCHENG</creator><creatorcontrib>WANG XIN ; WANG HUIBIN ; LYU GUOFANG ; XIONG XINGNAN ; ZHU XINGCHENG</creatorcontrib><description>The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170517&amp;DB=EPODOC&amp;CC=CN&amp;NR=106683055A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170517&amp;DB=EPODOC&amp;CC=CN&amp;NR=106683055A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>WANG HUIBIN</creatorcontrib><creatorcontrib>LYU GUOFANG</creatorcontrib><creatorcontrib>XIONG XINGNAN</creatorcontrib><creatorcontrib>ZHU XINGCHENG</creatorcontrib><title>Degradation model and group sparse representation-based foggy day image restoration method</title><description>The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzD0KwkAQhuFtLES9w3iAQCQk2EpUrKysbMLoftkEkp1ldi1ye3_IAaze5uFdmvsRTtly6sXTKBYDsbfkVF6BYmCNIEVQRPj0U9mDIyy14txElifqR3ZfFJPo_EHqxK7NouUhYjN3Zbbn062-ZAjS4PN-wiM19XWXV9W-yMvyUPxj3moSO50</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>WANG XIN</creator><creator>WANG HUIBIN</creator><creator>LYU GUOFANG</creator><creator>XIONG XINGNAN</creator><creator>ZHU XINGCHENG</creator><scope>EVB</scope></search><sort><creationdate>20170517</creationdate><title>Degradation model and group sparse representation-based foggy day image restoration method</title><author>WANG XIN ; WANG HUIBIN ; LYU GUOFANG ; XIONG XINGNAN ; ZHU XINGCHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106683055A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>WANG HUIBIN</creatorcontrib><creatorcontrib>LYU GUOFANG</creatorcontrib><creatorcontrib>XIONG XINGNAN</creatorcontrib><creatorcontrib>ZHU XINGCHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG XIN</au><au>WANG HUIBIN</au><au>LYU GUOFANG</au><au>XIONG XINGNAN</au><au>ZHU XINGCHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Degradation model and group sparse representation-based foggy day image restoration method</title><date>2017-05-17</date><risdate>2017</risdate><abstract>The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN106683055A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Degradation model and group sparse representation-based foggy day image restoration method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20XIN&rft.date=2017-05-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106683055A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true