Degradation model and group sparse representation-based foggy day image restoration method
The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG XIN WANG HUIBIN LYU GUOFANG XIONG XINGNAN ZHU XINGCHENG |
description | The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106683055A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106683055A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106683055A3</originalsourceid><addsrcrecordid>eNqNzD0KwkAQhuFtLES9w3iAQCQk2EpUrKysbMLoftkEkp1ldi1ye3_IAaze5uFdmvsRTtly6sXTKBYDsbfkVF6BYmCNIEVQRPj0U9mDIyy14txElifqR3ZfFJPo_EHqxK7NouUhYjN3Zbbn062-ZAjS4PN-wiM19XWXV9W-yMvyUPxj3moSO50</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Degradation model and group sparse representation-based foggy day image restoration method</title><source>esp@cenet</source><creator>WANG XIN ; WANG HUIBIN ; LYU GUOFANG ; XIONG XINGNAN ; ZHU XINGCHENG</creator><creatorcontrib>WANG XIN ; WANG HUIBIN ; LYU GUOFANG ; XIONG XINGNAN ; ZHU XINGCHENG</creatorcontrib><description>The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170517&DB=EPODOC&CC=CN&NR=106683055A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,778,883,25551,76302</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170517&DB=EPODOC&CC=CN&NR=106683055A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>WANG HUIBIN</creatorcontrib><creatorcontrib>LYU GUOFANG</creatorcontrib><creatorcontrib>XIONG XINGNAN</creatorcontrib><creatorcontrib>ZHU XINGCHENG</creatorcontrib><title>Degradation model and group sparse representation-based foggy day image restoration method</title><description>The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzD0KwkAQhuFtLES9w3iAQCQk2EpUrKysbMLoftkEkp1ldi1ye3_IAaze5uFdmvsRTtly6sXTKBYDsbfkVF6BYmCNIEVQRPj0U9mDIyy14txElifqR3ZfFJPo_EHqxK7NouUhYjN3Zbbn062-ZAjS4PN-wiM19XWXV9W-yMvyUPxj3moSO50</recordid><startdate>20170517</startdate><enddate>20170517</enddate><creator>WANG XIN</creator><creator>WANG HUIBIN</creator><creator>LYU GUOFANG</creator><creator>XIONG XINGNAN</creator><creator>ZHU XINGCHENG</creator><scope>EVB</scope></search><sort><creationdate>20170517</creationdate><title>Degradation model and group sparse representation-based foggy day image restoration method</title><author>WANG XIN ; WANG HUIBIN ; LYU GUOFANG ; XIONG XINGNAN ; ZHU XINGCHENG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106683055A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG XIN</creatorcontrib><creatorcontrib>WANG HUIBIN</creatorcontrib><creatorcontrib>LYU GUOFANG</creatorcontrib><creatorcontrib>XIONG XINGNAN</creatorcontrib><creatorcontrib>ZHU XINGCHENG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG XIN</au><au>WANG HUIBIN</au><au>LYU GUOFANG</au><au>XIONG XINGNAN</au><au>ZHU XINGCHENG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Degradation model and group sparse representation-based foggy day image restoration method</title><date>2017-05-17</date><risdate>2017</risdate><abstract>The invention discloses a degradation model and group sparse representation-based foggy day image restoration method. According to the degradation model and group sparse representation-based foggy day image restoration method, on the basis of research on a foggy day atmospheric scattering model, the depth variation law of each pixel and the law of the light change of the pixels caused atmospheric light scattering are analyzed and summarized, so that a foggy day image degradation operator is designed, and a foggy day degradation model is constructed; on the basis of the degradation model, a group sparse representation method is adopted to perform training, so that group dictionaries corresponding to each group are obtained; an SBI (split Bregman iteration) method is adopted to solve a sparse coefficient; and finally, a restored image is expressed by the group dictionaries and the sparse coefficient. According to the degradation model and group sparse representation-based foggy day image restoration method of t</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN106683055A |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Degradation model and group sparse representation-based foggy day image restoration method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A35%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG%20XIN&rft.date=2017-05-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106683055A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |