Intrinsically motivated extreme learning machine autonomous development system and operating method thereof

The invention belongs to the technical field of intelligent robots, and concretely relates to an intrinsically motivated extreme learning machine autonomous development system and an operating method thereof. The autonomous development system comprises an inner state set, a motion set, a state trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LI FUJIN, WANG WEI, ZHAO CHUANSONG, REN HONGGE, GONG HAIYANG, DU JIAN, SHI TAO, YIN RUI, LIU WEIMIN, ZHANG CHUNLEI
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LI FUJIN
WANG WEI
ZHAO CHUANSONG
REN HONGGE
GONG HAIYANG
DU JIAN
SHI TAO
YIN RUI
LIU WEIMIN
ZHANG CHUNLEI
description The invention belongs to the technical field of intelligent robots, and concretely relates to an intrinsically motivated extreme learning machine autonomous development system and an operating method thereof. The autonomous development system comprises an inner state set, a motion set, a state transition function, an intrinsic motivation orientation function, a reward signal, a reinforced learning update iteration formula, an evaluation function and a motion selection probability. According to the invention, an intrinsic motivation signal is utilized to simulate an orientation cognitive mechanism of the interest of people in things so that a robot can finish relevant tasks voluntarily, thereby solving a problem that the robot is poor in self-learning. Furthermore, an extreme learning machine network is utilized to practice learning and store knowledge and experience so that the robot, if an experience fails, can use the stored knowledge and experience to keep exploring instead of learning from the beginning.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106598058A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106598058A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106598058A3</originalsourceid><addsrcrecordid>eNqNyzEKwkAQRuE0FqLeYTyAEJFILCUo2ljZhyH5YxZ3Z8LuJOjtBfEAVq_53jx7XsWik-Qa9v5NQc1NbGgJL4sIIA-O4uRBgZveCYhHU9GgY6IWE7wOAWKU3skQiKUlHRDZvg-s15asR4R2y2zWsU9Y_brI1ufTvbpsMGiNNHADgdXVbZvvi0OZF-Vx94_5ANKOQyM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Intrinsically motivated extreme learning machine autonomous development system and operating method thereof</title><source>esp@cenet</source><creator>LI FUJIN ; WANG WEI ; ZHAO CHUANSONG ; REN HONGGE ; GONG HAIYANG ; DU JIAN ; SHI TAO ; YIN RUI ; LIU WEIMIN ; ZHANG CHUNLEI</creator><creatorcontrib>LI FUJIN ; WANG WEI ; ZHAO CHUANSONG ; REN HONGGE ; GONG HAIYANG ; DU JIAN ; SHI TAO ; YIN RUI ; LIU WEIMIN ; ZHANG CHUNLEI</creatorcontrib><description>The invention belongs to the technical field of intelligent robots, and concretely relates to an intrinsically motivated extreme learning machine autonomous development system and an operating method thereof. The autonomous development system comprises an inner state set, a motion set, a state transition function, an intrinsic motivation orientation function, a reward signal, a reinforced learning update iteration formula, an evaluation function and a motion selection probability. According to the invention, an intrinsic motivation signal is utilized to simulate an orientation cognitive mechanism of the interest of people in things so that a robot can finish relevant tasks voluntarily, thereby solving a problem that the robot is poor in self-learning. Furthermore, an extreme learning machine network is utilized to practice learning and store knowledge and experience so that the robot, if an experience fails, can use the stored knowledge and experience to keep exploring instead of learning from the beginning.</description><language>chi ; eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; CONTROLLING ; COUNTING ; PHYSICS ; REGULATING ; SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170426&amp;DB=EPODOC&amp;CC=CN&amp;NR=106598058A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170426&amp;DB=EPODOC&amp;CC=CN&amp;NR=106598058A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LI FUJIN</creatorcontrib><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>ZHAO CHUANSONG</creatorcontrib><creatorcontrib>REN HONGGE</creatorcontrib><creatorcontrib>GONG HAIYANG</creatorcontrib><creatorcontrib>DU JIAN</creatorcontrib><creatorcontrib>SHI TAO</creatorcontrib><creatorcontrib>YIN RUI</creatorcontrib><creatorcontrib>LIU WEIMIN</creatorcontrib><creatorcontrib>ZHANG CHUNLEI</creatorcontrib><title>Intrinsically motivated extreme learning machine autonomous development system and operating method thereof</title><description>The invention belongs to the technical field of intelligent robots, and concretely relates to an intrinsically motivated extreme learning machine autonomous development system and an operating method thereof. The autonomous development system comprises an inner state set, a motion set, a state transition function, an intrinsic motivation orientation function, a reward signal, a reinforced learning update iteration formula, an evaluation function and a motion selection probability. According to the invention, an intrinsic motivation signal is utilized to simulate an orientation cognitive mechanism of the interest of people in things so that a robot can finish relevant tasks voluntarily, thereby solving a problem that the robot is poor in self-learning. Furthermore, an extreme learning machine network is utilized to practice learning and store knowledge and experience so that the robot, if an experience fails, can use the stored knowledge and experience to keep exploring instead of learning from the beginning.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>CONTROLLING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><subject>REGULATING</subject><subject>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyzEKwkAQRuE0FqLeYTyAEJFILCUo2ljZhyH5YxZ3Z8LuJOjtBfEAVq_53jx7XsWik-Qa9v5NQc1NbGgJL4sIIA-O4uRBgZveCYhHU9GgY6IWE7wOAWKU3skQiKUlHRDZvg-s15asR4R2y2zWsU9Y_brI1ufTvbpsMGiNNHADgdXVbZvvi0OZF-Vx94_5ANKOQyM</recordid><startdate>20170426</startdate><enddate>20170426</enddate><creator>LI FUJIN</creator><creator>WANG WEI</creator><creator>ZHAO CHUANSONG</creator><creator>REN HONGGE</creator><creator>GONG HAIYANG</creator><creator>DU JIAN</creator><creator>SHI TAO</creator><creator>YIN RUI</creator><creator>LIU WEIMIN</creator><creator>ZHANG CHUNLEI</creator><scope>EVB</scope></search><sort><creationdate>20170426</creationdate><title>Intrinsically motivated extreme learning machine autonomous development system and operating method thereof</title><author>LI FUJIN ; WANG WEI ; ZHAO CHUANSONG ; REN HONGGE ; GONG HAIYANG ; DU JIAN ; SHI TAO ; YIN RUI ; LIU WEIMIN ; ZHANG CHUNLEI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106598058A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>CONTROLLING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><topic>REGULATING</topic><topic>SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES</topic><toplevel>online_resources</toplevel><creatorcontrib>LI FUJIN</creatorcontrib><creatorcontrib>WANG WEI</creatorcontrib><creatorcontrib>ZHAO CHUANSONG</creatorcontrib><creatorcontrib>REN HONGGE</creatorcontrib><creatorcontrib>GONG HAIYANG</creatorcontrib><creatorcontrib>DU JIAN</creatorcontrib><creatorcontrib>SHI TAO</creatorcontrib><creatorcontrib>YIN RUI</creatorcontrib><creatorcontrib>LIU WEIMIN</creatorcontrib><creatorcontrib>ZHANG CHUNLEI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LI FUJIN</au><au>WANG WEI</au><au>ZHAO CHUANSONG</au><au>REN HONGGE</au><au>GONG HAIYANG</au><au>DU JIAN</au><au>SHI TAO</au><au>YIN RUI</au><au>LIU WEIMIN</au><au>ZHANG CHUNLEI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Intrinsically motivated extreme learning machine autonomous development system and operating method thereof</title><date>2017-04-26</date><risdate>2017</risdate><abstract>The invention belongs to the technical field of intelligent robots, and concretely relates to an intrinsically motivated extreme learning machine autonomous development system and an operating method thereof. The autonomous development system comprises an inner state set, a motion set, a state transition function, an intrinsic motivation orientation function, a reward signal, a reinforced learning update iteration formula, an evaluation function and a motion selection probability. According to the invention, an intrinsic motivation signal is utilized to simulate an orientation cognitive mechanism of the interest of people in things so that a robot can finish relevant tasks voluntarily, thereby solving a problem that the robot is poor in self-learning. Furthermore, an extreme learning machine network is utilized to practice learning and store knowledge and experience so that the robot, if an experience fails, can use the stored knowledge and experience to keep exploring instead of learning from the beginning.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN106598058A
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
CONTROLLING
COUNTING
PHYSICS
REGULATING
SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
title Intrinsically motivated extreme learning machine autonomous development system and operating method thereof
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A53%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LI%20FUJIN&rft.date=2017-04-26&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106598058A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true