Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase
The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | QUAN YUSHENG FANG LINJIE SHI PUXIN WANG ZIJIAN |
description | The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106199232A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106199232A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106199232A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTyAYBIQUoagWImFfRh2_2QHsrsxswZyexU8gNV7xbfO-ntUSTKDFM8XggGJH2H5ex7JRUuxIye9ozkOiXtQnDE5sKU0cVAvqhIDDRJAdgnsxZDhkY2khSSYCazYZquOB8Xu1022v5wfzfWAMbbQj0ZAaptbfjzlVVWURV3-Y94ZgUCn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><source>esp@cenet</source><creator>QUAN YUSHENG ; FANG LINJIE ; SHI PUXIN ; WANG ZIJIAN</creator><creatorcontrib>QUAN YUSHENG ; FANG LINJIE ; SHI PUXIN ; WANG ZIJIAN</creatorcontrib><description>The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161207&DB=EPODOC&CC=CN&NR=106199232A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161207&DB=EPODOC&CC=CN&NR=106199232A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QUAN YUSHENG</creatorcontrib><creatorcontrib>FANG LINJIE</creatorcontrib><creatorcontrib>SHI PUXIN</creatorcontrib><creatorcontrib>WANG ZIJIAN</creatorcontrib><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><description>The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTyAYBIQUoagWImFfRh2_2QHsrsxswZyexU8gNV7xbfO-ntUSTKDFM8XggGJH2H5ex7JRUuxIye9ozkOiXtQnDE5sKU0cVAvqhIDDRJAdgnsxZDhkY2khSSYCazYZquOB8Xu1022v5wfzfWAMbbQj0ZAaptbfjzlVVWURV3-Y94ZgUCn</recordid><startdate>20161207</startdate><enddate>20161207</enddate><creator>QUAN YUSHENG</creator><creator>FANG LINJIE</creator><creator>SHI PUXIN</creator><creator>WANG ZIJIAN</creator><scope>EVB</scope></search><sort><creationdate>20161207</creationdate><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><author>QUAN YUSHENG ; FANG LINJIE ; SHI PUXIN ; WANG ZIJIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106199232A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>QUAN YUSHENG</creatorcontrib><creatorcontrib>FANG LINJIE</creatorcontrib><creatorcontrib>SHI PUXIN</creatorcontrib><creatorcontrib>WANG ZIJIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QUAN YUSHENG</au><au>FANG LINJIE</au><au>SHI PUXIN</au><au>WANG ZIJIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><date>2016-12-07</date><risdate>2016</risdate><abstract>The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng |
recordid | cdi_epo_espacenet_CN106199232A |
source | esp@cenet |
subjects | MEASURING MEASURING ELECTRIC VARIABLES MEASURING MAGNETIC VARIABLES PHYSICS TESTING |
title | Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QUAN%20YUSHENG&rft.date=2016-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106199232A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |