Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase

The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: QUAN YUSHENG, FANG LINJIE, SHI PUXIN, WANG ZIJIAN
Format: Patent
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator QUAN YUSHENG
FANG LINJIE
SHI PUXIN
WANG ZIJIAN
description The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_CN106199232A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CN106199232A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_CN106199232A3</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuE0FqLeYTyAYBIQUoagWImFfRh2_2QHsrsxswZyexU8gNV7xbfO-ntUSTKDFM8XggGJH2H5ex7JRUuxIye9ozkOiXtQnDE5sKU0cVAvqhIDDRJAdgnsxZDhkY2khSSYCazYZquOB8Xu1022v5wfzfWAMbbQj0ZAaptbfjzlVVWURV3-Y94ZgUCn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><source>esp@cenet</source><creator>QUAN YUSHENG ; FANG LINJIE ; SHI PUXIN ; WANG ZIJIAN</creator><creatorcontrib>QUAN YUSHENG ; FANG LINJIE ; SHI PUXIN ; WANG ZIJIAN</creatorcontrib><description>The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of</description><language>chi ; eng</language><subject>MEASURING ; MEASURING ELECTRIC VARIABLES ; MEASURING MAGNETIC VARIABLES ; PHYSICS ; TESTING</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161207&amp;DB=EPODOC&amp;CC=CN&amp;NR=106199232A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161207&amp;DB=EPODOC&amp;CC=CN&amp;NR=106199232A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>QUAN YUSHENG</creatorcontrib><creatorcontrib>FANG LINJIE</creatorcontrib><creatorcontrib>SHI PUXIN</creatorcontrib><creatorcontrib>WANG ZIJIAN</creatorcontrib><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><description>The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of</description><subject>MEASURING</subject><subject>MEASURING ELECTRIC VARIABLES</subject><subject>MEASURING MAGNETIC VARIABLES</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuE0FqLeYTyAYBIQUoagWImFfRh2_2QHsrsxswZyexU8gNV7xbfO-ntUSTKDFM8XggGJH2H5ex7JRUuxIye9ozkOiXtQnDE5sKU0cVAvqhIDDRJAdgnsxZDhkY2khSSYCazYZquOB8Xu1022v5wfzfWAMbbQj0ZAaptbfjzlVVWURV3-Y94ZgUCn</recordid><startdate>20161207</startdate><enddate>20161207</enddate><creator>QUAN YUSHENG</creator><creator>FANG LINJIE</creator><creator>SHI PUXIN</creator><creator>WANG ZIJIAN</creator><scope>EVB</scope></search><sort><creationdate>20161207</creationdate><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><author>QUAN YUSHENG ; FANG LINJIE ; SHI PUXIN ; WANG ZIJIAN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_CN106199232A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng</language><creationdate>2016</creationdate><topic>MEASURING</topic><topic>MEASURING ELECTRIC VARIABLES</topic><topic>MEASURING MAGNETIC VARIABLES</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>QUAN YUSHENG</creatorcontrib><creatorcontrib>FANG LINJIE</creatorcontrib><creatorcontrib>SHI PUXIN</creatorcontrib><creatorcontrib>WANG ZIJIAN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>QUAN YUSHENG</au><au>FANG LINJIE</au><au>SHI PUXIN</au><au>WANG ZIJIAN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase</title><date>2016-12-07</date><risdate>2016</risdate><abstract>The invention provides a positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase, belonging to the field of high voltage overhead transmission line dynamic capacity increase. According to the method, the influences of a proximity effect and a skin effect on a line alternating current resistor are considered and are converted into a change of an equivalent flow passage area, and thus the equivalent alternating current resistor is solved. The conductive wire inner-inductance of the proximity effect and the skin effect is calculated according to an effective inside radius. The temperature and effective flow passage area of a conductive wire are obtained with online measured unit length power frequency positive reactance, the flow passage capacity and thermal stabilization limit of the dynamic capacity increase are obtained with the maximum flow passage capacity and the thermal stabilization limit of a whole line weakest section, and the safe carrier upper limit of</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng
recordid cdi_epo_espacenet_CN106199232A
source esp@cenet
subjects MEASURING
MEASURING ELECTRIC VARIABLES
MEASURING MAGNETIC VARIABLES
PHYSICS
TESTING
title Positive sequence impedance method of high voltage overhead transmission line dynamic capacity increase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=QUAN%20YUSHENG&rft.date=2016-12-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3ECN106199232A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true